
THE ‘SCHEMA-LAST’ APPROACH: DATA ANALYTICS AND THE

INTELLIGENCE LIFE-CYCLE

A thesis submitted in partial fulfilment of the the requirements of the

Degree of Doctor of Philosophy
Facutly of Education, Science, Technology and Mathematics

Neil Brittliff

May 2015

© Copyright by Neil Brittliff 2015

All Rights Reserved

ii

FORM B

Certificate of Authorship of Thesis

Except where clearly acknowledged in footnotes, quotations and the bib-

liography, I certify that I am the sole author of the thesis submitted today

entitled:

The ‘Schema Last’ Approach: Data Analytics and the
Intelligence Life-Cycle

I further certify that to the best of my knowledge the thesis contains no

material previously published or written by another person except where

due reference is made in the text of the thesis.

The material in the the thesis has not been the basis of an award of any other

degree or diploma except where due reference is made in the text of the

thesis.

The thesis complies with University requirements for a thesis as set out

in Gold Book Part 7: examination of Higher Degree by Research Theses

Policy, Schedule Two (S2).

Signature of Candidate

Signature of chair of the Supervisory Panel

Date

iii

iv

Abstract

Discovering information and knowledge from big volumes of data is a problem that con-

fronts many Intelligence Agencies within Australia and possibly throughout the world.

Specifically, the Australian Crime Commission (ACC) was faced with the problem of how

to deal with the large amounts of intelligence data it was receiving and to collate and an-

alyze this data. Moreover, the existing approach of ‘data cleansing’ was proving to be in-

effectual, inefficient and could no longer cope with increasing amounts of data the agency

was receiving. A different approach had to be found to replace the previous solution that

involved transforming the data into a form that could loaded into a highly structured rela-

tional system. In addition to the transformation, much of the data was discarded simply

because the data did not comply with the schema definition.

The thesis will investigate existing methodologies or the ‘Schema-First’ Approach in

relation to intelligence collation and analysis. The thesis will demonstrate that the ‘Schema-

Last’ Approach in combination with the ‘Big Data’ platform could be applied when the data

is retrieved and analyzed and not when the data is first ingested. It will be shown that the

‘schema-last’ allows for new and novel approach to entity resolution and data fusion.

The approach of fusing data where the format, structure or quality cannot be guaranteed

is now a real issue with many government and private organizations. If the structure and

quality can be guaranteed then there is no issue. However, in the case of the ACC this is not

the case and organizations are compelled by law to hand over data extracts. In many cases,

data obtained this way is often not easily processable or able to be fused with the data sets.

The ‘schema-last’ is a new approach to the way data is utilized within the Intelligence

Life-cycle. This approach applies a schema to the data only when the data is required not

when the data is first acquired. In addition, it will be shown how this approach provides

v

the foundation to explore, exploit, analyze and fuse data without losing any data integrity

or provenance, and the approach is an improvement on existing similar approaches. It will

also be shown how this approach can be extended to an ontological representation of the

data and, like a schema, ontological structures could be applied when the data is analyzed

not on data ingestion.

A new approach requires a new platform to store, retrieve the data to replace the re-

lational normalized representation currently in use. It will be shown that the Big Data

platform is not only used to store the large data volumes but provide the mechanisms to

support the ‘schema-last’ approach for data analytic. Other potential solutions will be dis-

cussed and how these approaches would prove to be deficient compared to ‘schema-last’.

Finally, the ‘Minerva’ application utilizing the ‘schema-last’ approach proved to be a suc-

cessful implementation. This resolved many of the data quality issues and enabled analytics

to be performed against data that could not be processed by the previous relational based

system. The proposed novel ‘Schema-Last’ model is validated against several possible im-

plementations, however further work is required resulting from questions encountered in

this research.

vi

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 2

1.1.1 The Data Volume Challenge . 3

1.1.2 The Data Value Challenge . 4

1.2 Thesis Questions . 6

1.2.1 Data Management and Stewardship 6

1.2.2 Data Quality . 7

1.2.3 Data Fusion . 7

1.2.4 Data Processing . 7

1.2.5 Problem Statement . 8

1.2.6 The ACC’s Advance Analytics Section 10

1.3 Hypothesis . 10

1.4 Thesis Overview . 11

1.4.1 Proposed Computational Architecture 11

1.4.2 Current Practices within the ‘Intelligence Life Cycle’ 12

1.5 Thesis Organization . 13

2 The Intelligence Life-Cycle 15
2.1 Big Data-Driven Intelligence . 15

2.2 What is Intelligence . 16

2.3 The Intelligence Life-Cycle . 17

vii

2.4 Intelligence Collation and Collection . 18

2.5 The Impact of Big Data on the Intelligence Life-Cycle 21

2.5.1 Technology impact on the Intelligence Life-Cycle 22

2.5.2 Cloud Storage and the Intelligence Life-Cycle 26

2.6 ‘Data Variety’ within the Collation Phase 27

2.6.1 What is Data? . 27

2.6.2 The Messiness of Data . 29

2.6.3 Data Munging . 31

2.6.4 Noisy Data . 32

2.7 Data Dimensions . 32

2.7.1 Temporal . 32

2.7.2 Snap Shot . 33

2.7.3 Geospatial . 33

2.7.4 Graph/Semantic . 33

2.7.5 Feed and Real-time . 33

2.8 Cross Industry Standard for Data Mining 34

2.9 Intelligence Products . 38

2.9.1 Dependency Analysis . 38

2.10 Summary . 39

3 The ‘Big Data’ Perspective 41
3.1 ‘Big Data’ Characteristics . 43

3.2 ‘Big Data’ Classifications . 45

3.2.1 NoSQL Classification . 48

3.2.2 Columnar NoSQL Databases . 49

3.3 The Semantic Web . 52

3.3.1 RDF Data Structures . 56

3.3.2 The SPARQL Language . 56

3.3.3 The Triple Store . 57

3.4 Summary . 63

viii

4 ‘Schema-First’: The Current Approach 65
4.1 Schema Application . 67

4.2 Ontology First . 68

4.3 Data Cleansing and the ‘Schema-First’ Approach 70

4.4 ‘Schema-First’ - Schema Definition Languages 71

4.5 Data Ingestion . 73

4.5.1 Human Cleansing . 73

4.5.2 Automated Cleansing . 73

4.5.3 Extract Transform Load . 74

4.6 ‘Schema-First’ and the Intelligence Life Cycle 74

4.7 Summary . 76

5 The Proposed ‘Schema-Last’ Approach 79
5.1 The Data Quality Challenge . 80

5.1.1 Data Format and Data Cleansing 80

5.2 The ‘Schema-Last’ Approach Specification 81

5.2.1 Formal Process Description . 81

5.2.2 The Triage Process . 82

5.3 Representational Artefacts . 85

5.4 The Set-Store . 86

5.4.1 Physical Artefacts within the Set Store 86

5.4.2 Representational artefacts within the Set Store 88

5.4.3 Conceptual Artefacts . 89

5.4.4 Formal Definition . 93

5.4.5 Label Allocation . 99

5.4.6 Domain Classification . 99

5.4.7 Domain Ontological Structure . 100

5.4.8 Cultural Ontology Classification 101

5.4.9 The Logical Schema . 101

5.4.10 Meta-Data . 102

5.4.11 ISO Standard 11179-1 . 104

ix

5.4.12 Meta-Data and Provenance . 104

5.4.13 Container Level Meta-Data . 105

5.4.14 Meta-Data Tags Formal Definition 106

5.4.15 Storage Considerations . 107

5.4.16 Provenance and Storage . 107

5.5 RDF Representation . 108

5.5.1 RDF List Structure . 108

5.6 Additional Processing Requirements . 111

5.6.1 Feed Management . 111

5.6.2 Data Disposal . 111

5.7 The Semantic Store . 111

5.7.1 The RDF Schema Specification 112

5.7.2 The OWL Ontology Specification 113

5.7.3 The Palantir Ontology Specification 115

5.7.4 The Role of the Semantic Store 115

5.8 The Match Store . 115

5.9 Summary . 116

6 The ‘Schema-Last’ Approach and Data Exploration 117
6.1 ‘Big Data’ Indexing . 118

6.2 Elastic Search . 118

6.3 Index normalization . 119

6.3.1 Phonetic Index Encoding . 120

6.4 Lucene and Apache Solr . 122

6.4.1 Document Inverse Frequency . 124

6.4.2 The Solr Schema and Domain Mapping 126

6.4.3 The Solr Schema and Artefact Representation 126

6.4.4 The Solr Schema and Models . 127

6.4.5 Search Chaining . 127

6.4.6 Search Federation . 130

6.5 Summary . 131

x

7 The ‘Schema-Last’ Approach and Data Matching 133
7.1 Entity Matching . 134

7.2 Entity Resolution . 134

7.3 Data Matching . 135

7.3.1 The Data Matching Process . 135

7.3.2 Data Ambiguity . 136

7.4 Data Matching Techniques . 138

7.4.1 N-gram Ratio Comparison . 139

7.4.2 Monge-Elkan String Comparison 140

7.4.3 Levenshtein String Comparision 140

7.5 Stochastic Considerations . 140

7.5.1 Data Quality . 141

7.5.2 Time of Collection . 141

7.5.3 Intelligence Rating . 142

7.5.4 Rarity of Name . 144

7.6 Multiple-criteria decision analysis . 144

7.6.1 Decision Trees . 145

7.6.2 Markov Chains . 145

7.6.3 The Weighted Sum Model . 146

7.6.4 The Weighted Product Model . 147

7.6.5 Stochastic Weighted Average Score 147

7.6.6 The ACC ‘Aries’ Score . 148

7.7 Data Matching Techniques in Practice . 150

7.8 Summary . 150

8 The ‘Schema-Last Approach’ and Data Fusion 151
8.1 Data Fusion and Data Reduction . 152

8.1.1 The Waterfall Model . 153

8.1.2 Boyd Loop . 153

8.1.3 The JDL Model . 154

8.1.4 Durrant-Whyte Classification . 155

xi

8.1.5 Dasarathy’s Classification . 155

8.1.6 Thomopoulos Classification . 157

8.1.7 Fusion Models and Intelligence Life-Cycle 158

8.2 Data Munging and Data Fusion . 158

8.3 Data Fusion Quality . 159

8.3.1 Data Collection and Data Fusion 159

8.3.2 Incomplete or Missing Data . 160

8.4 Data Reduction . 160

8.4.1 Map Reduction . 161

8.4.2 Data Reduction and Hadoop . 161

8.5 Summary . 163

9 The ‘Schema-Last’ Approach: A Case Study 165
9.1 Fusion Data Holding . 167

9.2 The Architecture . 167

9.3 ‘Schema-Last’ Approach Reference Implementation 169

9.4 Evaluation of Existing Implementations 170

9.5 Summary of ‘Schema-Last’ Approach Implementations 173

9.6 Relational Table and Recursive Structures 175

9.6.1 Aries . 177

9.6.2 Shiloh . 178

9.6.3 Eland . 179

9.6.4 Physical Artefacts within the Set Store 183

9.7 The Minerva Project . 186

9.7.1 Storage and Processing Strategies 187

9.7.2 Load Performance . 188

9.7.3 Extraction Performance . 189

9.7.4 Property Path Support . 190

9.7.5 Implementation Acceptance . 192

9.7.6 The Bulk Matcher . 192

9.8 Other Implementations . 194

xii

9.9 Summary . 195

10 Conclusion and Further Work 199
10.1 Response to Thesis Questions . 201

10.1.1 Data Management and Stewardship 201

10.1.2 Data Quality . 202

10.1.3 Data Fusion . 203

10.2 Problem Statement Response . 204

10.3 Further Work . 207

Bibliography 209

Appendix 216

A Supporting Material 217
A.1 Publications . 217

A.2 Letter of Appreciation . 218

B Media Release - ACC Fusion Capability 219

C The Australian Criminal Intelligence Model 221

xiii

xiv

List of Tables

2.1 Typology of collection models . 20

2.2 Cost per gigabyte over time for ‘small systems’ (Shugart, 2012) 25

2.3 Generic tasks within the CRISP-DM reference model 36

3.1 Comparison of triple store storage implementations 59

3.2 Triple store implementations (Garshol, 2012) 60

4.1 Score card example . 71

4.2 Typical data specification . 72

5.1 Date format representation . 81

5.2 Group domains . 90

5.4 Symbols and nomenclature . 94

5.6 Tags, symbols and nomenclature . 106

5.7 RDF representation of SLA artefacts . 108

5.8 Property path expressions . 110

6.2 Various name encoding algorithms . 122

6.1 Soundex algorithm . 122

6.3 Tokenizer Ambiguity . 129

7.1 n-gram comparison calculation . 139

7.2 Various name matching test results . 144

9.1 Schema types . 176

9.2 Eland’s keyspace triple support . 183

xv

10.1 Schema-First/Schema-Last Comparison 201

xvi

List of Figures

1.1 The ‘Schema-Last’ Approach architecture 12

2.1 The Intelligence-Life Cycle . 17

2.2 Knowledge Discovery Process . 21

2.3 Knowledge Discovery Feedback Loop (Alnoukari and Sheikh, 2012) 22

2.4 Intelligence-Life Cycle (Darren and Choo, 2014) 23

2.5 Cost of storage (Shugart, 2012) . 26

2.6 Cost per gigabyte over time (Shugart, 2012) 26

2.7 ‘Big Data’ variety survey (Olavsrud, 2014) 28

2.8 The geography of the digital universe - 2012 - (Gantz and Reinsel, 2012) . . 30

2.9 CRISP-DM framework . 35

2.10 CRISP-DM phases . 37

3.1 Veracity is not a measure of magnitude 42

3.2 Three ’V’s compared to the three ’C’s . 43

3.3 Linked structure representation . 46

3.4 The database landscape . 47

3.5 Columnar data storage representation . 50

3.6 The triplet structure . 53

3.7 A directed graph structure . 53

3.8 RDF to describe the contents of ‘chutney’ and visual representation 55

3.9 SPARQL language example . 55

3.10 SPARQL example . 57

3.11 The Apache Jena platform . 61

xvii

3.12 Sesame API SAIL structure . 63

4.1 Example relational table definition . 68

4.2 Example XSD definition . 69

4.3 Extract Transform Load process . 75

5.1 ‘Schema-First’ Approach . 80

5.2 ‘Schema-Last’ Approach . 80

5.3 ‘Schema-Last’ Approach - processing . 83

5.4 Data cleansing . 84

5.5 Data triage . 84

5.6 The structure hierarchy . 85

5.7 Set store ‘list’ structure . 87

5.8 ‘Schema-Last’ models . 89

5.13 Row/column representation . 91

5.9 Distinct models . 92

5.10 Encapsulated models . 92

5.11 Overlapping models . 92

5.12 Complex model specification . 92

5.14 Folder Structure . 93

5.15 Typical ontology support . 100

5.16 Cultural ontology . 100

5.17 Schema definition and visual representation 102

5.18 Meta-Data descriptions . 103

5.19 Meta-Data domains . 103

5.20 RDF list represented in N3 form . 109

5.21 A visual representation of Figure 5.20 . 109

5.22 Owl ontology specification . 113

5.23 The relationships between store classifications 116

6.1 Index strategies and the ‘Schema-Last’ Approach 119

6.2 Double Meta-phone algorithm . 123

xviii

6.3 SLA domain - Solr field mapping . 127

6.4 Snippet of a Solr schema . 128

6.5 Sample Solr document . 129

6.6 Search chaining . 130

7.1 Name ambiguity . 137

7.2 Date ambiguity . 137

7.3 Admiralty system . 143

7.4 A Simple Decision Tree . 146

7.5 Markov chain example . 146

8.1 The Waterfall model . 153

8.2 The Boyd loop . 153

8.3 JDL model . 157

8.4 Dasarathy’s classification . 157

8.5 Apache Pig example . 162

8.6 Hadoop and the ‘Schema-Last’ Approach 162

9.1 Backlog demand: 2009 - 2011 . 166

9.2 System evolution . 170

9.3 Comparison of triple store implementations (Load) 171

9.4 Comparison of triple store implementations (Retrieval) 172

9.5 Memory footprint on retrieval . 173

9.6 Basic retrieval patterns . 174

9.7 SQL recursive queries on various platforms 177

9.8 Aries schema structure . 178

9.9 Graph keyspace translation . 180

9.10 Eland logical structure . 181

9.11 The Link column family . 182

9.12 The List column family . 182

9.13 The Node column family . 182

9.14 Wide Column Structure . 184

xix

9.15 Eland structures . 184

9.16 Eland console . 185

9.17 Eland thin client modeller . 186

9.18 Strategy 1: Column family structure . 189

9.19 Strategy 2: Column family structure . 190

9.20 Strategy 3: Column family structure . 191

9.21 Minerva - Load performance . 192

9.22 Minerva - Extraction performance . 193

9.23 Minerva - Memory footprint on extraction 193

9.24 Minerva - Tested property path expressions 194

9.25 Comparison between the ‘Schema-First’ and ‘Schema-Last’ Approach . . . 195

9.26 The Palantir Search Assistant . 196

9.27 Data source processing summary: 2009 - 2014 197

xx

Chapter 1

Introduction

A number of interesting research questions with regard to data confronting the intelligence

community, in particular the Australian Crime Commission (ACC) and other Australian

Intelligence Agencies. The ACC recognizes the value of data (see Appendix B) and that

both data science and data analytics provide the foundation for a successful investigation.

The agency currently has over 1200 distinct data collections. A collection is a request

by the agency for an organization to supply a copy of a requested data set. The ACC has

powers of coercion in that an organization is compelled to hand over the data otherwise face

prosecution. Not all data is received by ACC’s coercive powers. Often data is freely given

by organizations to aid in investigations. There is nothing in the ACC coercive powers that

allows the ACC to specify the format of the data. There are also budgetary constraints

placed upon the ACC, which has led to an overall reduction in the ACC’s workforce. The

ACC challenge in regards to data processing, provides a fertile environment for the research

investigation which motivated the research covered in this thesis.

The ACC established the Fusion Data Centre which is responsible for the collection and

analysis of data received by the organization. The focus of this is to enhance the capability

and productivity of the Fusion Data Centre which is seen as a strategic centre of excellence.

This is confirmed by a media release which is as follows:

“To truly have impact against serious and organized crime, we must first dis-

cover and understand the national and international picture of its networks,

1

2 CHAPTER 1. INTRODUCTION

methodologies, and the full range of vulnerabilities it exploits. We must then

translate this into effective responses.

To do this, we need rich, contemporary, and comprehensive criminal intel-

ligence. Building this intelligence picture and identifying organized crime

trends and weaknesses is the Crime Commission’s core business.

Much of the Commission’s intelligence is housed in our National Criminal In-

telligence Fusion Capability, which brings together subject matter experts, ana-

lysts, technology and big data to identify previously unknown criminal entities,

criminal methodologies, and patterns of crime (Australian Crime Commission,

2012).”

1.1 Motivation

A major challenge that faces all law-enforcement and intelligence-gathering organizations

is accurately and efficiently analyzing the growing volume of data that relates to crime,

which includes cyber attacks, money laundering and any form of criminal behaviour that

can be classified as serious or organised. Data mining is seen as the tool that will enable

criminal investigators (who may lack training in data mining and analysis) to explore large

data sets as described by Hsinchun Chen, Wingyan Chung, Jennifer Jie Xu, Gang Wang,

Yi Qin and Michael Chau (Chen et al., 2004).

Intelligence collection for strategic assessments in law enforcement has traditionally

relied on the initiative and guile of the analysts. Furthermore, it has become self-evident

that the insatiable desire for data to allow police forces, intelligence agencies and the gov-

ernment to make accurate and timely decisions has never been as important as it is today.

Unless relevant data and intelligence is known to the analyst, it is possible that the end

product could ‘miss the point’ or fail to identify new and potential threats to the commu-

nity.

The plethora of potential data available to organizations such as the ACC now has the

potential to flood the existing intelligence processing infrastructure. The problem has now

entered the Big Data world and this presents new challenges to the agency. Furthermore,

1.1. MOTIVATION 3

the data ranges from pristine to messy and with the large amounts of data received by the

ACC it is no longer possible to develop models to predict criminal behavior or recognise

potential threats with the existing analytical approaches available to them.

However, with the large amounts of data introduces another problem, that is how to

deal with messy data. Much of the data requires some form of cleaning to turn the original

source ultimately into knowledge and as stated by Kenneth Neil Cukier and Viktor Mayer-

Schoenberg:

“We can learn from a large body of information things that we could

not comprehend when we used only smaller amounts (Cukier and Mayer-

Schoenberger, 2013).”

Finally, new techniques and methodologies need to be discovered to cope with the data

and intelligence demands placed upon the ACC. It was apparent that the data deluge was

not going to abate and the ACC must adapt or develop a novel approach to address data

volume, variety and processing.

1.1.1 The Data Volume Challenge

With the ever-increasing volume of data available to the investigators and analysts it is im-

portant that the results are presented in concise fashion and that they are not overwhelmed

by data (Darren and Choo, 2014).

As stated by Darren Quick (Trends and Issues in Criminal Justice published by the

Australian Institute of Criminology):

”(The increases in available data) gives rise to a variety of needs, including:

• A more efficient method of collecting and preserving evidence.

• A capacity to triage evidence prior to conducting full analysis.

• Reduced data storage requirements.

• An ability to conduct a review of information in a timely manner for intelligence,

research and evidential purposes.

4 CHAPTER 1. INTRODUCTION

• An ability to archive important data.

• An ability to quickly retrieve and review archived data.

• A source of data to enable a review of current and historical cases (Darren and Choo,

2014).”

The ‘Schema-Last’ approach is a replacement for the Extract Transform Load used by many

organizations to preprocess data prior to data analysis. The approach is now employed at

the ACC to address the problem of providing intelligence to other organizations in a timely

manner. In addition, there was no consistent view of the data within the organization. As

Yang and Wu found:

“Many techniques are designed for individual problems, such as classifi-

cation or clustering, but there is no unifying theory. However, a theoretical

framework that unifies different data mining tasks including clustering, clas-

sification, association rules, etc., as well as different data mining approaches

(such as statistics, machine learning, database systems, etc.), would help the

field and provide a basis for future research (Yang and Wu, 2006).”

The thesis will examine existing solutions and propose a new and novel approach to deal

with the data volume and variety faced by many organizations.

1.1.2 The Data Value Challenge

Data is seen as an asset within an organization and, if exploited correctly, can be used to

gain a competitive advantage over their rivals. In addition, data can be used to capture

concepts

The purpose to cleanse or not cleanse can best be expressed by utilizing the Beliefs, De-
sires and Intentions (Bratman, 1999) methodology based upon Michael Bratman’s theory

of human practical reasoning (Castanedo, 2011). Michael Bratman’s theory can be applied

to data analysis where the data modeller should take the following into consideration:

Beliefs Beliefs provide the inference rules to process and manipulate the incoming

data. These rules can be captured and reused for new data sets or reapplied to

existing data sets.

1.1. MOTIVATION 5

Desires Desires represent how the data can best be used or processed. Desires represent

the motivation behind the data and are generally expressed as an accomplish-

ment. For example, this data can be used to determine if this person is ‘on the

move’ or ‘up to no good’.

Intentions Intentions represent the deliberate use of the data and how the data is to be

used. For example, the data may be obtained so that it enhances the intelli-

gence surrounding a particular criminal organization.

However, there is a cost to data cleansing and that is:

• Inconsistent processing where cleansing involves human assessment.

• The elimination or removal of unwanted tokens within a field can lead to the intro-

duction of errors and inconsistencies.

• The introduction of human judgment which in turn may lead to errant assumptions

that result in decisions based on false or misleading data interpretation.

Jimmy Lin and Dmitiry Ryaboy state:

“That a major problem for the data scientist is to flatten the bumps as a

result of the heterogeneity of data (Lin and Ryaboy, 2013).”

There are several big data implementations on how to fuse the data and deal with the poten-

tial variability of each data source. If there is only one data source then this is not an issue,

however if data comes in a number of formats or various schema definitions there is a need

to deal with this issue. Each data source may have a different format for the data, may not

have split the ‘name’ into the constituent components such as first, middle and last names,

may have a different number of fields than any other data source. The most important issue

with data variability is to ensure the integrity of the data. What does this mean and how

can data integrity be retained? If the data has a single field that contains the entire name

it may not be possible to split the name into the constituent components of first, middle or

last. For example the name, David Jones could mean the first name is David and the last

name is Jones or that the first name is Jones and the last name is David. Perhaps further

6 CHAPTER 1. INTRODUCTION

examination of the data relating to the next few names within the data set may reveal that

the David is the first name and Jones is the last name. It may not be impossible to draw any

conclusion pertaining to the actual order of the names.

A more difficult example concerns the date of birth or any date within the data set. This

is similar to the Y2K problem where the year was represented by two digits and the century

part of the date is omitted. In addition, some nationalities represent the date with the month

as the first significant part, followed by the day of the month and then the year. In Australia,

most dates begin with the day of month followed by the month and then the year.

1.2 Thesis Questions

The thesis will focus primarily on the collation, process and analysis phase of the Intelli-

gence Life-Cycle and dissemination process is not covered or questioned by the thesis. The

thesis will examine the impact of Big Data on the Intelligence Life-Cycle and how existing

processes can adapt to the torrent of data faces by the Intelligence community. The thesis

will answer the following research questions:

1.2.1 Data Management and Stewardship

The thesis will address the following major questions pertaining to data management and

stewardship:

• How best to ingest data received from external sources?

• How to process data in a timely manner?

• How to retain data provenance to ensure that all data can be traced back to the original

source?

• How to ensure that data is not changed or that the data meaning is lost through mod-

ification and transformation?

1.2. THESIS QUESTIONS 7

1.2.2 Data Quality

The thesis will address the following questions pertaining to data quality:

• How to deal with data sets with messy or noisy data values?

• How to deal with data sets with no identifiable primary key?

• What if the time and man-power taken to clean and collate data exceeds the agency’s

processing capability?

• How to deal with data values that have an ambiguous value or meaning?

1.2.3 Data Fusion

The thesis will address the following questions pertaining to data fusion:

• How to provide consistent fused view between the data sets contained within the

agency?

• How to fuse and analyze data on demand?

– How to fuse unrelated eclectic data sources into a single coherent view. The

fused view will provide a unique perspective of the data for further analysis.

– How can the fused view be explored and exploited?

1.2.4 Data Processing

The Fusion Data Centre was created as part of a national initiative to improve data collec-

tion quality and intelligence. These three initiatives are part of a New Program Proposal

(NPP) which led to the formation of the Fusion Data Centre. The thesis will demonstrate

how this new approach to data fusion can achieve the following:

• Proactive discovery of unknowns.

• Real-time target monitoring and the alerting of target activity.

8 CHAPTER 1. INTRODUCTION

• Vulnerability identification of communities or individuals.

Initially, Big Data was not seen as technology that can be used to address these initiatives.

However, the Advance Analytics Team began the process and research to determine how

Big Data, Search and Match and Big Data Analytics can be used to address each of them.

It took a number of years to build this capability and it was not clear at the outset what was

the most appropriate approach to be taken to deal with the data volume.

1.2.5 Problem Statement

The ACC recognized in 2010 that there needs to be fusion capability whereby the agency

can exploit the numerous data sets that the agency obtains through its coercive powers.

Problem statements identified as recognized by the ACC which were assigned to the Fusion

Data Centre can subdivided into a number distinct problem statements which are:

1. Lack of an agreed ideal end state for the fusion capability.

2. Lack of core data management function and data management regime around bulk

data holdings.

3. Data entry functions are cumbersome and time consuming due to inflexible data

structures. As a consequence this has reduced the ability to ingest new data sources

due to large amounts of time and in turn may impede active operations.

“Ingestion delays of several months can render the data obsolete. The backlog for

data ingestion is growing rapidly and results in significant delays (Australian Crime

Commission, 2012).”

4. Search and discovery capabilities are highly ineffective; due to lack of connectedness

of data silos across different systems and networks. Early consideration of the key

problems in the agency identified an inability to answer “what do we know?” and as

a result, an Advance Search Capability was developed.

5. Excessive time spent collating data rather than spending time analyzing the data.

1.2. THESIS QUESTIONS 9

6. Identities are only able to be matched by converting data to a standard format across

all data sources. There is an inability to handle messy data where the data was either

poorly structured or contained a variety of data formats.

7. Lack of a single collaborative platform for discovery, collation and analysis of data

holdings. The approach taken by many analysts is to use Analyst Notebook and

Microsoft Excel. They have been the primary analysis tools used by analysts. These

tools do not have access to all data sources available within the agency.

8. Lack of sufficient basic analysis tools available enterprise wide, including social net-

work analysis (SNA), temporal data mining and Geo-spatial analysis.

9. Detection of previously unknown high risk entities is limited to data matching pro-

cesses due to a lack of time contiguous data sets.

10. Collected data that is not managed according to an agreed process and security

model.

11. Detection of previously unknown high risk entities is limited to data matching pro-

cesses that cannot take advantage of the complete data sets.

12. Internal alerting capabilities where Persons Of Interest (POIs) can be monitored.

13. External alerting capabilities from partner agencies, will enable external agencies to

have the ability to monitor POIs and report the results back to the ACC.

14. Improve real-time access to data. This also includes the ability of Social Network

Analysis (SNA) to identify groups or cliques, identify network density and identify

possible POIs.

15. Lack of capacity to develop advanced analytic tools. The NCTL (National Criminal

Target List) and the validation of the ACC’s TRAM (Threat Risk Assessment Model)

10 CHAPTER 1. INTRODUCTION

1.2.6 The ACC’s Advance Analytics Section

The ACC in 2010 formed the Advance Analytics Section was set up to establish the capabil-

ities as specified in the previous section. The section was primarily created to resolve these

problems. It become apparent that not a single technology would solve all these problems

or take a single approach. The Advance Analytics Section would investigate alternatives

to the traditional Data Mining Techniques and be responsible for the capture, collection

and collation of any data received by the ACC. The Advance Analytics Section would also

offer advice on how best to deal with data in terms of storage and accessibility. The above

problems motivated the research questions in this thesis (as acknowledged by the CIO at

the ACC see Appendix A.2).

1.3 Hypothesis

The thesis will propose a new approach to minimise the need for data cleansing so that

data does not have to undergo an extensive transformation process before the data is of any

use. In addition, the ‘Schema-Last’ approach offers ontological support to allow for the

creation of complex abstract models to enhance the description of the data. The hypothesis

is that ‘Schema-Last’ is an effective tool in the pursuit of effective data models and fuse

data sources.

In addition, no data or data source should be discarded. The premise of the ‘Schema-

Last’ approach is to retain all data in its original state and that a Schema describes each data

element and should be fluid enough that new knowledge pertaining to the data descriptions

or meta-data can be reapplied to other data sources. Essentially, the ‘Schema-Last’ ap-

proach schema can evolve when new knowledge becomes available relevant to the data that

the ‘Schema’ is representing.

Therefore a loosely specified ‘Schema’ or only a applying a ‘Schema’ when required is

a superior approach to the more traditional rigid ‘Schema’ structure or coercing the data to

fit the Schema.

1.4. THESIS OVERVIEW 11

1.4 Thesis Overview

The thesis will describe a model that can represent data and provide the platform for any

future analytical process. The ‘Schema-Last’ approach consists of the following phases see

(Figure 1.1):

Collating the process of collation and storage of data with reference to the Intelligence

Life-Cycle.

Exploring the index strategies and how the ‘Schema-Last’ models capture the structure

and meaning of the data. How these models can be used to explore and exploit

the data.

Matching the process of the application of algorithms to match entities from different

data sources.

Fusing the fusion or reduction of one or more data sources.

Analyzing the final phase where the models and data mining techniques can be applied

on the fused or reduced data sources.

Finally, a case study which confirmed the ‘Schema-Last’ approach and this approach re-

duced the existing back-log of uncollated data. The case study utilized a formal nomencla-

ture that describes the data structures and this applied to various phases of the Intelligence

Life-Cycle.

1.4.1 Proposed Computational Architecture

The ‘Schema-Last’ Approach provides a new and novel approach to data collation and

processing. The approach expands on existing approaches and can also take advantage of

existing data mining algorithms. The approach defines the following:

• A non-prescriptive ‘Schema’ definition language;

• A reference implementation to collate raw data within a semantic data store;

12 CHAPTER 1. INTRODUCTION

Collation Exploring Matching Fusing Analyzing

Schema Last Models
DisseminationData

Figure 1.1: The ‘Schema-Last’ Approach architecture

• Indexing strategies based on the models and artefacts defined as part of the Schema-

Last Approach;

• Algorithms that utilize the ‘Schema-Last’ Approach to combine multiple search re-

sults into a consolidated view;

• Data matching algorithms that utilize the ‘Schema-Last’ approach.

The thesis will show how the application of current technologies which include columnar

data base implementation such as Cassanda and Apache HBase utilising triple store tech-

nologies which include Apache Jena can form the foundation for the ‘Schema-Last’ Ap-

proach. In addition, Apache Solr provides the capability to effectively index and explore

the raw data. The thesis will explore a potential extension to RDF path expression to pro-

cess and store tabular data represented by the RDF list structure. In addition, the thesis will

propose a columnar implementation of the RDF triple store to support the ‘Schema-Last’

Approach.

1.4.2 Current Practices within the ‘Intelligence Life Cycle’

The ‘Schema-First’ Approach as described in Chapter 4 is the dominate technology for the

collation and initial processing of raw data. The assumption made by many data miners

1.5. THESIS ORGANIZATION 13

that data is clean and ready for processing. As stated by Tamraparni Dasu and Theodore

Johnson:

“Current books on data mining and analysis usually focus on the last stage of

the analysis process (getting the results) and spend little time on how the data

exploration and cleaning is done. Usually, their primary aim is to discuss the

efficient implementation of the data mining algorithms and the interpretation

of results. However, the true challenges in the task of data mining are:

• Creating a data set that contains the relevant and accurate information and

• Determining the appropriate analysis techniques.

In our experience, the tasks of exploratory data mining and data cleaning con-

stitute 80% of the effort that determines 80% of the value of the ultimate data

mining results ... However they assume that the data has already been gathered,

cleaned, explored and understood (Dasu and Johnson, 2003).”

The current practice is to clean or scrub the raw data or assume the data is valid. The

‘Schema-Last’ Approach accepts the ‘as is’ and applies models upon the data. The data

indexes represent the cleaned data but there is never any modification of the raw data.

1.5 Thesis Organization

The remainder of the thesis is as follows: The Intelligence Life-Cycle and Big Data tech-

nology, in particular the consequence of the Big Data ‘revolution’ has on the collection and

processing in both Chapter 2 and Chapter 3.

Chapter 4 will survey the current modeling techniques (‘Schema-First’ Approach) and

how these techniques influence data quality. The Volume Challenge will then describe the

‘Schema-Last’ approach and how this this approach is different from the ‘Schema-First’.

The next chapter, Chapter 5 chapter will also describe the language and nomenclature

used to express the Schema in ‘Schema-Last. In addition Chapter 5 will identify the rules,

the artefacts and the relationships between the artefacts that comprise the ‘Schema-Last’

14 CHAPTER 1. INTRODUCTION

Approach. The chapter will also describe how the ‘Schema-Last’ Approach can be applied

to ontological structures.

Chapter 6 will show how best to explore Big Data through the use of Big Indexes
and how the ‘Schema-Last’ Approach can be applied to determining the optimum indexing

strategy.

The next chapter - Chapter 7 - will then expand on Chapter 4 on how entity resolution is

supported by the ‘Schema-Last’ Approach and how data matching algorithms can benefit

from the ‘Schema-Last’ Approach.

Data fusion will be discussed in Chapter 8 and how data fusion and data reduction can

utilize the concepts described in Chapter 5 and Chapter 6. In addition, how the ‘fused’

data sources can be be presented as a single coherent view to support advance searching

capabilities.

Chapter 9 will describe how the ACC benefited from the ‘Schema-Last’ Approach and

how other Intelligence Agencies have expressed a desire to utilize this modeling technique

for their data sources. This chapter will examine existing triple store implementations and

how this compares with three reference implementations. The third reference implementa-

tion utilized the Apache Jena ARQ as a framework to provide the SPARQL support. Three

strategies are proposed in the thesis and each strategy is evaluated.

The final chapter - Chapter 10 - will propose extensions to the modelling techniques

described in this thesis and how other disciplines would benefit from the ‘Schema-Last’

Approach.

Chapter 2

The Intelligence Life-Cycle

2.1 Big Data-Driven Intelligence

Intelligence is an integral part of the ACC remit and is used to identify and monitor new

criminal and existing known targets. The intelligence cycle is the process of developing

unrefined data from multiple data sources then analyzing the ‘fused’ data sources. The

ACC and many other law enforcement agencies see that Big Data enables the collection to

store and process data at a unprecedented rate that is only going to increase. An integral

process of the intelligence cycle is the collection and processing of raw data. In addition,

the scale, complexity and the changing nature of intelligence data can make it impossible

to stay in front without the aid of technology to collect, process and analyze big data. As

stated by the Joint Committee on Law Enforcement:

“The ACC itself serves as the nexus between Australia’s law enforcement,

policing and national security agencies by facilitating the flow of criminal in-

telligence across these domains. As criminal intelligence is the ’core business’

of the ACC, it uses a range of methods to collect, use and share criminal intel-

ligence drawing on a variety of sources including law enforcement, policing,

national security, government and private sector bodies and its own investiga-

tions of organized criminal activity. It coordinates national information shar-

ing and, while emphasizing the importance of working in partnership to derive

15

16 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

intelligence, the ACC also has the power to conduct its own operations and

investigations (Joint Committee on Law Enforcement 2013).”

2.2 What is Intelligence

Intelligence is an essential component of law enforcement capability. It supports the

decision-making process and provides the tool for law enforcement leaders to make ac-

curate and timely decisions. Intelligence can be classified into four categories which are

(Quarmby, 2004):

Basic (background) intelligence: (What has happened?) This type of product back-

ground intelligence, usually encyclopaedic in nature, provides a broad range of base-

line information and intelligence. While not futures based, such products provide a

useful historical start point for analysis of futures.

Current Intelligence: (What is happening?) Specific assessments related to the status

and significance of an ongoing operational threat, event, environmental condition or

indication of illicit activity. This is the who? what? when? how? of an assessed

threat.

Warning Intelligence: (What may happen in the future?) This intelligence determines

future threats for law-enforcement, intelligence agencies and policy makers to focus

their attention on up and coming threats to the community.

Estimate Intelligence: (What could occur?) Estimate intelligence is an attempt to project

probable future developments within the law enforcement environment. This in-

cludes an assessment of key change agents or drivers that may cause disturbance

within the community.

Both Estimate and Warning Intelligence deal with mid or long range events where ‘estimate

intelligence’ predicts future developments whilst ‘warning intelligence’ focus on potential

threats to the community at large. The ‘Schema-Last’ Approach methodology provides the

framework to collect, analyze and process the raw data collected as part of the Intelligence

2.3. THE INTELLIGENCE LIFE-CYCLE 17

Life-Cycle. Furthermore, it will be shown that the collection, collation and processing of

data is critical to the production of intelligence products. The process can be described as

agile and the products produced from one investigation can form part of a large investiga-

tion or in turn may result in new investigations.

Intelligence is fundamental to any investigation and data collections can drive the in-

vestigation in any number of directions. The role of data mining and in particular data

analytics has become an integral part of any police investigation. Systems can be devel-

oped that continuously monitor data collections to alert law enforcement agencies of any

activity that may cause harm to the community (Warning Intelligence).

2.3 The Intelligence Life-Cycle

Requirements

PlanningCollection

Processing

Analysis Dissemination

Figure 2.1: The Intelligence-Life Cycle

The Intelligence Life-Cycle (see Figure

2.1) central focus is data and data ex-

ploitation. The Intelligence Life-Cycle be-

gins with the identification of possible data

source, the collection and collation of the

data, the analysis and application of mod-

els upon this data, the production and dis-

semination of situation reports and finally

an evaluation and review of the entire In-

telligence Life-Cycle. However, the col-

lation and processing phase of the Intelli-

gence Life-Cycle as it will be shown must

deal with:

• messy and noisy data;

• structured, semi-structured, and un-

structured data;

• tabular and highly linked data.

18 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

The Australian Criminal Intelligence Model described in Appendix C is used by most law

enforcement agencies in Australia. The Australian Institute of Criminal Intelligence (Dar-

ren and Choo, 2014) describes the Intelligence Life-Cycle (shown in Figure 2.4) and identi-

cal to the Australian Criminal Intelligence Model. This ‘Schema-Last’ Approach supports

the Australian Criminal Intelligence Model and provides the frame work to support this

model, specifically the collation and processing phases.

2.4 Intelligence Collation and Collection

The collation of intelligence is central to the delivery of assessments that add value to a

case or the profile of a person or organization. Effective intelligence relies on three criteria

(Ratcliffe, 2008):

Reliable: It is essential to convince the clients that they can rely on the data which under-

pins the conclusions that are presented to them. That means that the process should

be sufficiently comprehensive to convince the client that all the appropriate collec-

tion requirements, or questions, have been pursued and intelligence from all relevant

sources gathered.

Valid: The collected data and intelligence may reliably reflect what is known but does

this amount to a true or full understanding of the topic? An intelligence collection

process becomes a self-fulfilling prophecy unless any limits on the capability to fill

such gaps are acknowledged. A key element is the ability to recognize and place in

context a single fragment of intelligence that provides insight ant that a vast array of

data does not.

Timely: Even if an assessment is well founded it is of little use to decision-makers if it is

not available at the time that a decision is required.

To satisfy the above approach, a system must be in place to enable the collected intelligence

to be collated and processed with no interference to the data itself. If the process does

pervert the data then the intelligence is unreliable.

The importance of developing suitable collection and collation capabilities are twofold:

2.4. INTELLIGENCE COLLATION AND COLLECTION 19

• The development of a repository whereby existing knowledge is available to further

an investigation. Without this knowledge all intelligence operations would require

the commencement of a new or independent collection process.

• The data repository can identify gaps within the collection process.

The collection of intelligence is central to the delivery of assessments that are useful. Oliver

Higgins (Higgins, 2009) identified two distinct approaches pertaining to intelligence collec-

tions: the bottom-up and top-down. The differences between the approaches are identified

in Table 2.1.

The bottom-up approach is well suited to the intelligence and Knowledge Discovery

Process (KDP) model which was first discussed in 1989. Different models by Fayyad

(Fayyad et al., 1996) were suggested starting with a process model. The common factor of

all data-driven discovery process is that knowledge is the final outcome of this approach.

The process has defined four approaches (see Figure 2.2):

1. Traditional KDP approach. This approach is widely used by most KDP modelling

innovators. Starting with KDP process modelling, many of KDP models used the

same process flow including most of the following steps: business understanding,

data understanding, data processing, data mining/modelling, model evaluation, and

deployment/visualization.

2. Ontology-based KDP approach. This approach is the integration of ontology engi-

neering and traditional KDP approach steps. Three directions were identified in this

approach: Ontology for KDP, KDP for Ontology, and the integration of both previous

directions .

3. Web-based KDP approach. This approach mainly deals with web log analysis. It is

mainly similar to traditional KDP approach, but it has some unique steps to deal with

web transaction logs.

4. Agile-based KDP approach. This approach is the integration between agile method-

ologies and KDP traditional methodologies.

20 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

Category Top-Down Bottom-Up
Characteristics A generic and open-ended process

whereby collection assets are
actively directed to fill gaps in
knowledge.

A passive process based on
collation of information produced
by everyday policing and from
tactical collection plans.

Strengths More dynamic and therefore
timely. Able to throw light on
unknowns. Provides answers to
‘why’ questions and not just
inferences.

The quickest results by collating
what is known rather than collating
anything new. Provides insights
about emerging trends and possibly
identifies unknowns.

Weaknesess Findings may lack validity due to
lack of context and empirical
content. Risk that the process may
be self-fulfilling, collecting
intelligence against a static set of
requirements.

Risks that the process may be
self-fulfilling - not suited to
advancing understanding of known
unknowns.

When to use? Criminal’s activity (including
market indicators such as price),
associations, attitude and capacity.
Filling known unknowns.
Indentifing unknown criminals.

To gain community intelligence or
intelligence about prices in illegal
markets at street level, new or
changing popularity of criminal
methods, suspects whose profile
and impact are growing. This
includes the correct identification
of criminals and identifying
criminal activity where the actual
identification of the criminals has
not been established.

Table 2.1: Typology of collection models

2.5. THE IMPACT OF BIG DATA ON THE INTELLIGENCE LIFE-CYCLE 21

Selection

Processing

Transformation

Data Mining

Interpretation/Evaluation

Figure 2.2: Knowledge Discovery Process

Whatever the approach, albeit traditional, ontology-based, web-based or agile the ‘Schema-

Last’ Approach supports all four models. The role data as input to the Knowledge Discov-

ery Feedback Loop (see Figure 2.3) drives the knowledge discovery process.

2.5 The Impact of Big Data on the Intelligence Life-Cycle

Intelligence and the information world is rapidly changing. Back in the 1970s and 1980s

storage capacity was one of the metrics that altered the way both data is stored and retrieved.

In fact, it was as though the data belonged to the organization and that the comparatively

small data storage was sufficient to perform analysis and to draw conclusions (Setty, 2013).

In turn this has affected the decision-making process in the ACC and many other intelli-

gence agencies. Big Data Technology has the potential to make the decision-maker able to

process huge data volumes that were not possible only ten years ago. The term ‘Big Data’

appeared for the first time in 1998 in a Silicon Graphics (SGI) slide deck by John Mashey

with the title ‘Big Data and the Next Wave of Infra Stress’. The origin of the term ‘Big

Data’ is due to the fact that individuals and organizations are creating a huge amount of

data every day and this trend is not likely to decline anytime soon.

22 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

Source Data In f ormation Knowledge Decision

Figure 2.3: Knowledge Discovery Feedback Loop (Alnoukari and Sheikh, 2012)

Alnoukari and Sheikh (Alnoukari and Sheikh, 2012) defined knowledge discovery as

concerns with the entire knowledge extraction process, including how data is stored and

accessed, how to use efficient and scalable algorithms to analyze massive data-sets, how to

interpret and visualize the results, and how to model and support the interaction between

human and machine. Therefore, the impact of ‘Big Data’ has meant that the available data

has had a dramatic impact on how data is gathered, stored and analyzed. New tools such

as Hadoop were developed to process and analyze these large data stores. ‘Big Data’ has

now meant that records are no longer required to be deleted and that archived data is now

available on nearline storage (storage that is quickly accessible by a robot but lacks the

performance of online storage) rather than relegated to tape backups that are difficult to

retrieve and process.

2.5.1 Technology impact on the Intelligence Life-Cycle

The Intelligence-Life cycle is not only driven by government policy, knowledge gaps, but

also driven by technology. The collation phase is restricted by the available storage and

collation processing tools. ‘Big Data’ is an emerging technology that can store and process

large data volumes as part of the collation phase. ‘Big Data’ is more than a marketing

term but is used to classify type of data storage whereby the storage demands exceed tradi-

tional technologies. Usually, the traditional technology refers to relational databases such

as IBM’s DB2, Oracle’s DBMS or Microsoft’s SQL server and these products cannot meet

the demands of data volume. Data is an integral part of the collection and collation phase

2.5. THE IMPACT OF BIG DATA ON THE INTELLIGENCE LIFE-CYCLE 23

Figure 2.4: Intelligence-Life Cycle (Darren and Choo, 2014)

24 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

of the Intelligence Life-Cycle and this has meant new techniques are required to process

this torrent.

“We resist giving a concrete definition since that would limit it. But basically,

it refers to the idea that we have so much more information these days that we

can apply new techniques to it, to spot useful insights or unlock new forms of

economic value. There are things we can do with a large body of data that we

simply could not do when it was in smaller amounts. In our book, we identify

three features: more, messy and correlations (Dumbill, 2012).”

Another factor is that the cost of storage has reduced significantly and in some way tech-

nology has driven the collection phase of the intelligence. Moore’s law can be summarized

as:

“In a nutshell, Moore’s law says that every two years, computer capacity

(memory, speed and so on) increases by a factor of 2. How does this apply to

‘Big Data’? It seems like big data is also growing exponentially, nobody will

contest this statement (Dumbill, 2012).”

As Shugart (Shugart, 2012) defines the space cost per year:

“The data confirms it: there is a very strong exponential correlation in

space/cost ratio (r=0.9916). Over the last 30 years, space per unit cost has

doubled roughly every 14 months (increasing by an order of magnitude every

48 months). ”

The regression equation allowed Shugart to calculate the reduction of stor-

age costs is defined:

cost = 10−2.052(year−1980)+6.304

The significant reduction of cost pertains to storage, memory and the overall infrastruc-

ture. Furthermore, cloud computing has allowed law enforcement organizations to store

their data in a cost effective manner and they are no longer required to purchase and operate

their own computer infrastructure.

2.5. THE IMPACT OF BIG DATA ON THE INTELLIGENCE LIFE-CYCLE 25

Date Drive Description Size (MB) Cost $GB

1980 July North Star 18 $4,199.00 $233,000.00
1981 September Apple 5 $3,500.00 $700,000.00
1981 November Seagate 5 $1,700.00 $340,000.00
1981 December VR Data Corp. 6.3 $2,895.00 $460,000.00
1983 December Corvus 6 $1,895.00 $316,000.00
1983 December Xcomp 10 $1,895.00 $190,000.00
1983 December Corvus 20 $3,495.00 $175,000.00
1983 December Davong 10 $1,650.00 $165,000.00
1983 December Xcomp 16 $2,095.00 $131,000.00
1984 March Percom/Tandon 5 $1,399.00 $280,000.00
1984 May Tecmar 5 $1,495.00 $299,000.00
1984 May Corvus 11 $2,350.00 $214,000.00
1984 May CTI 11 $1,995.00 $181,000.00
1984 May Davong 10 $1,645.00 $165,000.00
1984 May Pegasus (Great Lakes) 23 $1,845.00 $80,000.00
1985 July First Class Peripherals 10 $710.00 $71,000.00
1987 October Iomega 20 $1,199.00 $60,000.00
1989 March Western Digital 40 $1,199.00 $36,000.00
1995 January Seagate 2,900 $2,899.00 $990.00
1996 June 10 Western Digita 1,600 $399.99 $295.00
1996 August 14 IBM 1,760 $379.99 $263.00
1996 September Quantum 3,200 $469.00 $173.00
1997 August 24 Western Digital 2,100 $279.99 $153.00
1997 December 3 Maxtor 7,000 $579.99 $95.30
1998 January 16 Quantum 6,400 $479.99 $86.30
1999 February 27 Quantum 19,200 $512.46 $30.70
1999 May 27 Fujitsu UDMA 17,300 $369.00 $24.50
1999 December 1 Quantum IDE 18,200 $348.00 $22.00
2000 February 1 Fujitsu 27,300 $375.00 $15.80
2001 April 25 Fujitsu 5400 Rpm UDMA-100 40,000 $199.00 $5.71
2002 September 20 Western Digital 7200 Rpm Ultra ATA-100 60,000 $139.99 $2.68
2003 November 29 Maxtor 7200 Rpm IDE 120,000 $144.88 $1.39
2004 December 4 Barracuda 7200RPM, Internal ATA/100 400,000 $280.00 $0.70
2005 December 12 Hitachi Deskstar 7K250 250GB 250,000 $130.00 $0.52
2006 December 27 Samsung 80GB 80,000 $35.00 $0.44
2007 June 24 Seagate 250GB 250,000 $100.00 $0.40
2008 January 13 Beyond Micro Monster Mobile 1TB 1,000,000 $270.00 $0.27
2009 July 24 HITACHI 0A38016 7200 RPM SATA 3.0Gb/s 1,000,000 $74.99 $0.07

Table 2.2: Cost per gigabyte over time for ‘small systems’ (Shugart, 2012)

26 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

2008 2011 2014 2016 2019

0

100

200

300

400

Year

Si
ze

E
X

(1
00

)

Figure 2.5: Cost of storage (Shugart,
2012)

1978 1984 1989 1995 2000 2006 2011

0

1,000

2,000

3,000

4,000

Year

C
os

tM
eg

ab
ty

e
Figure 2.6: Cost per gigabyte over time
(Shugart, 2012)

2.5.2 Cloud Storage and the Intelligence Life-Cycle

‘Big Data’ has driven the adoption of cloud solutions for many law enforcement organi-

zations. Cloud computing offers a cost-effective way to support ‘Big Data’ technologies

and the advanced analytics applications that can drive the intelligence Life-Cycle value.

There are security concerns with storing data in the cloud, however the Australian Attor-

ney General’s Department have commenced the process in establishing a protected cloud

network to allow agencies such as the ACC to store and process data within a secure cloud

environment. As yet there is no firm Australian Government policy on what data can be

stored within a cloud environment or the required classification.

Cloud offerings provide the government a unique opportunity to store endless amounts

of data and not be concerned with the day-to-day management of the data. There is a

symbiotic relationship between big data and cloud and David S. Linthicum describes this:

“The use of big data technology, such as those that leverage map-reduce, will

provide the most bang for the buck on cloud-based platforms. Indeed, I would

declare that big data is clearly one of the first killer applications for PaaS (Plat-

form as a Service) and IaaS (Infrastructure as a Service) public cloud comput-

ing platforms (Linthicum, 2013).”

2.6. ‘DATA VARIETY’ WITHIN THE COLLATION PHASE 27

With the ever increasing demand placed upon an organisation’s infrastructure as a result of

big data storage the cloud offers an alternative storage capability that traditional informa-

tion technology infrastructures can no longer support.

2.6 ‘Data Variety’ within the Collation Phase

Variety or variability of data poses one of the greatest challenge to any ‘Big Data’ imple-

mentation. If there is only a single data source then this is not a problem and is easy to

deal with. However, if there is a wide variety of data sources all of which have different

formats then this can pose a real challenge for any organization. Data Variety could pose

the greatest problem faced as a Survey in 2014 of 100 data scientists (see Figure 2.7) has

identified. The problem is variety as stated by Thor Olavsrud:

“A survey of (100) data scientists finds that a majority of them believe their work has

grown more difficult as a result of the rapidly increasing variety of data sources they need

to draw upon, and nearly a quarter feel Hadoop is not suited to the analytics they need to

perform (Olavsrud, 2014).”

2.6.1 What is Data?

The concepts datum, designation, and value are defined as (ISO/IEC, 2012):

datum: designation whose concept is a value.

designation: association of a concept with a signifier that denotes it.

value: concept with a defined notion of equality for it.

A designation is a general notion, as there are special kinds depending on the subject field.

In terminology, there are terms and appellations. A term is a linguistic designation of a

general concept, and an appellation is a linguistic designation of an individual concept . The

subject field of data has its own kind of designation: a datum is a designation whose concept

is a value. Sometimes, when using the idea of designations, people refer to the signifier as

28 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

Figure 2.7: ‘Big Data’ variety survey (Olavsrud, 2014)

2.6. ‘DATA VARIETY’ WITHIN THE COLLATION PHASE 29

the designation, but this is incorrect. There are three basic parts to designations: the concept

(which is a construct of the mind and can stand on its own), the signifier (which can stand

on its own, for instance a symbol), and the designation (the association of the signifier

to the concept for example: “this word-symbol-etc X means the concept ”). Likewise,

sometimes when using the idea of values, people refer to the signifier as the value, but this,

too, is incorrect: the value refers to the concept portion of the datum and not its signifier.

For example, one can easily discuss the notion of the value of seventeen-ness, a number, (a

concept) independent of any particular signifier, which can be a numeral (a kind of signifier

used to designate numbers).

2.6.2 The Messiness of Data

The rate of data growth world-wide is increasing at a rate never seen before:

“From 2005 to 2020, the digital universe will grow by a factor of 300, from

130 exabytes to 40,000 exabytes, or 40 trillion gigabytes (more than 5,200

gigabytes for every man, woman, and child in 2020). From now until 2020,

the digital universe will about double every two years (EMC, 2012).”

Therefore using all available data within the world is not a feasible proposition with the

ever increasing volume of data coming into this world. The uses of data has also changed

and no longer is data used for its intended purpose.

The value proposition for each data source can be quite different, as obtained by the

ACC, for example, data sets may be classified as low or high signal data sources. Low

signal data sources in themselves do not provide any useful indicators but could be used

to confirm an entity’s address, date of birth, property ownership and so on. An entity’s

membership of low signal data source in itself is not a form of intelligence. High signal

data sources would be further analyzed and an entity’s membership may indicate a potential

threat or indicate unlawful activity that would require further analysis.

The data-gathering phase may be necessary because some of the data you need may

never have been collected. Data can be acquired externally from public databases or in-

ternal databases that exist within the organization. Part of the data collection phase is to

identify and record all the different data sources (Larose, 2014). This should include:

30 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

32%19%

13%

4%
32%

United States
Western Europe
China
India
Rest of World

Figure 2.8: The geography of the digital universe - 2012 - (Gantz and Reinsel, 2012)

• Source of data could be from an external organization or from an internally generated

from an application.

• Owner of the data.

• Person/organization responsible for maintaining data and ensuring the integrity of

the data.

• How the data was obtained for example, was the data obtained under duress or an act

of parliament or given freely to the organization.

• Cost of the data (if purchased).

• Storage organization (for example, Cassandra, HBase, Oracle database, VSAM file,

etc.)

• Size in tables, rows, records, et cetera.

• Size in bytes of the data and number of records if the data is structured that way.

• Any special security requirements pertaining to data access.

• Restrictions or caveats on use.

• Any related data-sets.

• The location of the data or any geospatial reference.

2.6. ‘DATA VARIETY’ WITHIN THE COLLATION PHASE 31

• The time or validity period of the data.

The meta-data (data about data) can be stored with the data source or even separately.

The notion that meta-data is ‘data about data’ is incomplete because meta-data can be

descriptive data about things other than data, such as artefacts and hardcover books, is

inaccurate (because all data is about some other data). The essential characteristics of

meta-data include: it is descriptive data, and that it is descriptive about something. For

example, if P is data and if P then Q represents the descriptive relationship such that P

describes Q, then P is meta-data about Q. If there is no relationship from P to Q, then P

is no longer meta-data, i.e., P is merely data, because meta-data is always relative to the

object of description. Or, stated differently, P only becomes meta-data once its descriptive

relationship to Q is established. The application of meta-data in reference to ‘Schema-Last’

Approach can be found in Section 5.4.10.

2.6.3 Data Munging

Data munging, or sometimes referred to as data wrangling, means taking data that is stored

in one format and changing it into another format. Analysts regularly wrangle data into

a form suitable for computational tools through a tedious process that delays more sub-

stantive analysis. There are tools both interactive and command line that can assist data

transformation. Analysts must still conceptualize the desired output state, formulate a

transformation strategy, and specify complex transforms.

“Analysts regularly wrangle data into a form suitable for computational tools

through a tedious process that delays more substantive analysis. While inter-

active tools can assist data transformation, analysts must still conceptualize the

desired output state, formulate a transformation strategy, and specify complex

transforms (Guo et al., 2011).”

Data munging is a part of the collation phase of the Intelligence Life-Cycle. Much time is

consumed by the analysis to transform the data from the raw state to a more palatable state

suitable for ingestion and for further processing.

32 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

2.6.4 Noisy Data

Generally, there are two types of noise sources (Wu, 1995): (a) attribute noise; and (b) class

noise. The former is the errors that are introduced in the attribute values of the instances.

There are two possible sources for class noise (Zhu et al., 2003):

contradictory examples: that is the same examples with different class labels.

mis-classifications: instances labelled with incorrect classes or names.

Data is often delivered in idiosyncratic formats designed for human consumption. Often

the data source itself may contain data that has no intelligence significance. However, once

those data items are eliminated, if those data items did have any significant value, then this

is lost. An organizational policy should not throw any data out no matter how irrelevant the

data may seem at the time.

Another attribute of the data is the actual data format. The data format may actually be

significant intelligence data. For example, the date format used by North Americas is in the

form MM/DD/YYYY where the month precedes the day and year. In contrast, Australia

adopted a different date format.

With the data sizes that agencies such as the ACC must deal with, noise in ‘Big Data’

is a real issue and any assumptions applied to the data’s representation can be incorrect.

2.7 Data Dimensions

A data set can contain some of these characteristics if not all of them. It is important to

determine what the data is and what does the data represent. Not all data sets fit neatly into

one of the defined classifications. It is possible that the data sets have characteristics of

both temporal, geospatial or graph.

2.7.1 Temporal

Data that is classified as a temporal adds a time dimension to each row within the data set.

Temporal or time-series data represents the state of an ‘object’ at a specific point in time.

2.7. DATA DIMENSIONS 33

Generally, each record incorporates a single time stamp to identify the time the record was

created, the time of the transaction, or any other temporal dimension.

2.7.2 Snap Shot

Unlike temporal data, all the data within the data set represents a single point in time.

A series of snap shots adds the temporal dimension to the data in that each snap shot

represents the state of the data for that time period. Usually meta-data is used to capture

the time period of the snap shot.

2.7.3 Geospatial

This classification adds a geospatial dimension that is a longitude and latitude to each

row in the data set. A number of visualization tools exist that can interpret the longitude

and latitude coordinates and apply terrain images, polygons and overlay street maps and

gazetteer data.

2.7.4 Graph/Semantic

This is perhaps the most difficult data to classify. Data stored in a relational data base

contains some of the characteristics of graph data in that primary and foreign keys are

used to represent a relationship between one or more rows in a data. This type of data

classification enables the analyst to apply Social Network Analysis techniques upon the

data.

2.7.5 Feed and Real-time

Feeds are becoming more common as a form of data acquisition. This is where data is

streamed into the data-base in real time. Feeds usually represent a history transaction and

each row within the feed is time-stamped.

34 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

2.8 Cross Industry Standard for Data Mining

The Cross Industry Standard for Data Mining mirrors the Intelligence-Life Cycle. Both

frame works address the need to prepare and model data, understanding the business of the

organization, the purpose of collecting and processing the data.

The Cross Industry Standard Process for Data Mining (CRISP–DM) states that a given

data mining project has a life cycle consisting of six phases, That is, the next phase in

the sequence often depends on the outcomes associated with the preceding phase. There

may be further data preparation phase for further refinement before moving forward to the

model evaluation phase. The six phases are as follows (see Figure 2.9):

1. Business understanding phase: The first phase in the CRISP–DM standard process

may also be termed the research understanding phase . Enunciate the project objec-

tives and requirements clearly in terms of the business or research unit as a whole.

Translate these goals and restrictions into the formulation of a data mining problem

definition and prepare a preliminary strategy for achieving these objectives.

2. Data understanding phase: This is where the data is collected. Using exploratory

data analysis to familiarize yourself with the data, and discover initial insights. Eval-

uate the quality of the data. and select interesting subsets that may contain actionable

patterns.

3. Data preparation phase: This is the most labor-intensive phase and covers all as-

pects of preparing the final data set, which will be used for subsequent phases, from

the initial, raw, dirty data. Select the cases and variables you want to analyze that

are appropriate for your analysis. Perform transformations on certain variables, if

needed and clean the raw data so that it is ready for the modelling tools.

4. Modelling phase: Select and apply appropriate modelling techniques and Calibrate

model settings to optimize results. Often, several different techniques may be applied

for the same data mining problem.

5. Evaluation phase: The modelling phase has delivered one or more models. These

models must be evaluated for quality and effectiveness before we deploy them for use

2.8. CROSS INDUSTRY STANDARD FOR DATA MINING 35

Business Data−Understanding

Data−Preparation

Deployment

Data−modelling

Evaluation

Data

(Guo et al., 2011)

Figure 2.9: CRISP-DM framework

36 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

Business Un-
derstanding

Data Under-
standing

Data
Preparation

modelling Evaluation Deployment

Determine
Business
Objectives

Collect Initial
Data

Select Data Select
modelling
Techniques

Evaluate
Results

Plan
Deployment

Assess
Situation

Describe Data Clean Data Generate Test
Design

Review
Process

Plan
Monitoring and
Maintenance

Determine
Data Mining
Goals

Explore Data Integrate Data Build Model Determine
Next Steps

Produce Final
Report

Produce
Project Plan

Verify Data
Quality

Format Data Assess Model Review Project

Table 2.3: Generic tasks within the CRISP-DM reference model

in the field. Determine whether the model in fact achieves the objectives set for it in

the initial phase and the determination whether some important facet of the business

or research problem has not been accounted for sufficiently.

6. Deployment phase: Model creation does not signify the completion of the project.

There is a need to make use of created models according to business objectives. An

example of a deployment would be :

(a) Generate a report for management or external partners.

(b) Implement a parallel data mining process in another department or organization.

(c) Implement a model to monitor any unusual activity.

The CRISP-DM tasks are shown in Table 2.3. The Intelligence Life-Cycle mirrors

the CRISP-DM model in many ways. The business understanding task is analogous to

the requirements and collection phase; the data understanding and data preparation task is

performed as part of the collation and process phase.

Overall both methodologies complement each other, whilst the CRIPSP-DM reference

model requires that the data description and summarization be a concise description of

characteristics of the data, generally in an elementary and aggregated form. This form is

carried over to the modelling, evaluation and final deployment phases. The Data description

2.8. CROSS INDUSTRY STANDARD FOR DATA MINING 37

Understanding

ResearchDeployment

Evaluation

Modelling Preparation

Figure 2.10: CRISP-DM phases

38 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

and the summarization are usually known before hand and form input to the data mining

operation. The same applies to the Intelligence Life-Cycle where the outputs are known

and form an intrinsic part of the intelligence of law enforcement agencies.

2.9 Intelligence Products

Both the CRISP-DM and Intelligence Life-Cycle share much in common. Finally the use

of intelligence products is the analysis of various forms of data in such a way that it can be

used to find new unknowns or identify potential new targets. The simplest example of this

is that a list of known names as input which matched against the various data stores pro-

duces a result of known activity. This is referred to as washing where potential knowledge

is formed about an individual’s activity based on data within the intelligence data base.

If relationships are known within the data then these relationships allow for basic Social

Network Analysis to be performed: for example density measures, k core analysis which

forms part of their knowledge discovery. This new knowledge can be published and pre-

sented in the form of an intelligence product whereby the analyst can utilise this to further

their investigation.

2.9.1 Dependency Analysis

Dependency analysis consists of finding a model that describes significant dependencies

(or associations) between data items or events. Dependencies can be used to predict the

value of a data item or add information on other data items. Although dependencies can

be used for predictive modelling, they are mostly used for understanding. Dependencies

can be strict or probabilistic in that relationships were ascertained from unreliable sources.

However, dependency analysis is important to any investigation and can shed light on how

certain actions were undertaken by known targets.

2.10. SUMMARY 39

2.10 Summary

This chapter has described the Intelligence Life-Cycle and the demands of data in particular

reference to the collection and collation phase. The emergence of ‘Big Data’ has a signifi-

cant impact on the way data is managed and processed within the Intelligence Life-Cycle in

particular reference to the collection, collation and process phases. ‘Big Data’ technology

has removed many of the barriers that restricted what could be gathered and how this data

could be analyzed. Furthermore, a new approach to deal with data variability needs to be

defined. The next chapter will examine the ‘Big Data’ perspective and the impact of ‘Big

Data’ products and technologies on the Intelligence Life-Cycle.

40 CHAPTER 2. THE INTELLIGENCE LIFE-CYCLE

Chapter 3

The ‘Big Data’ Perspective

The ‘Big Data’ perspective is the first important task to address in order to make the ‘Big

Data’ analytics efficient and cost effective. The early detection of the ‘Big Data’ charac-

teristics can provide a cost effective strategy to many organizations to avoid unnecessary

deployment of ‘Big Data’ technologies. The data analytics on some data may not require

‘Big Data’ techniques and technologies; the current and well established techniques and

technologies may be sufficient to handle the data storage and data processing. Hence what

is required is an early analysis and understanding of the data characteristics for classifica-

tion.

“Big data is high-volume, high-velocity and high-variety information assets

that demand cost-effective, innovative forms of information processing for en-

hanced insight and decision making (Gartner, 2014).”

“Big data is data that exceeds the processing capacity of conventional database

systems. The data is too big, moves too fast, or does not fit the strictures of

your database architectures. To gain value from this data, you must choose an

alternative way to process it (Dumbill, 2012).”

“The problem with big-data-as-technology is that:

1. it is vague enough that every vendor in the industry jumped in to claim it for them-

selves

41

42 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

2. and everybody ‘knew’ that they were supposed to elevate the debate and talk about

something more business-y and useful (Elliott, 2013).”

Figure 3.1: Veracity is not a measure of magnitude

‘Big Data’ has often been de-

scribed as a classification of technolo-

gies designed to specifically address

the problems of data Variety, Velocity

and Volume or V3 (Gartner, 2014):

Variety ‘Big Data’ extends beyond

structured data, including un-

structured data of all varieties:

text, audio, video, click streams,

log files and more.

Velocity Often time-sensitive, big

data must be used as it is stream-

ing in to the enterprise in order

to maximize its value to the

business.

Volume ‘Big Data’ comes in one size:

large. Enterprises are awash with data, easily amassing terabytes and even petabytes

of information.

Often veracity and value are used to describe Big Data where veracity was introduced by

IBM International and value by Oracle Corporation. However as Figure 3.1 shows neither

are measures of magnitude.

The industry has seen this as an opportunity to create a new class of products specifi-

cally to address these issues. The plethora of products that class themselves as ‘Big Data’

is forever continuing and old database products are reclassifying themselves as ‘Big Data’

and an example of this is IBM’s DB2.

Compared to defining a metric to measure the Big Data characteristics in V3 space, it

is much easier to develop a metric in C3space using mathematical and statistical tools. In

3.1. ‘BIG DATA’ CHARACTERISTICS 43

C3space the cardinality defines the number of records in the dynamically growing dataset

at a particular instance (see Figure 3.2). The continuity defines two characteristics and they

are (Suthaharan, 2012):

• representation of data by continuous functions, and

• continuously growth of data size with respect to time.

The complexity defines three characteristics and they are:

• large varieties of data types;

• high dimensional dataset; and

• the speed of data processing is very high.

Velocity

Variety

Volume

Continuity

Complexity

Cardinality

Figure 3.2: Three ’V’s compared to the three ’C’s

3.1 ‘Big Data’ Characteristics

‘Big Data’ implementations share the following characteristics:

In addition, the importance of the timeliness of the data cannot be underestimated. A

‘Big Data’ implementation has the following characteristics:

• Fast insertion time: records must be added quickly.

44 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

• Fast random retrieval time.

• Fast sequential read time where it is necessary to read the data in-situ.

• Data replication: this is where the data can be replicated or copied across one or more

computers.

• Eventual consistency: the action of a record update, deletion or insertion is not nec-

essarily immediate across all copies of the data.

• Data description process is iterative. More compute power means that it is possible

to iterate models until they meet the specification. For example, building a model

trying to find the predictors for certain customer behaviors. The capture process may

begin with the extraction and analysis of a sample data set. This may support the

initial data descriptive hypothesis or reject this hypothesis.

• Only programmatic interface are provided by the ‘Big Data’ vendors. In addition,

there are limited user-friendly tools to explore the data sets. There is currently no

standard query language with ‘Big Data’ as with relational databases. An exception

to this rule is RDF triple stores.

‘Big Data’ implementations are not required to support the following:

• Row/Set Deletion: this is where records are deleted, some implementations for exam-

ple Cassandra place an indicator on the record or records to indicate that the record

has been deleted. This indicator is referred to as a tombstone.

• Atomic and isolated updates. Not all ‘Big Data’ implementations lock records or en-

sure data integrity. Certain implementations provide locks or alternate record version

management. Generally implemented by a lock placed on record or records to en-

sure the integrity of the transaction. This is particularity important if the transaction

is financial in nature. However, some ‘Big Data’ implementations do support this

concept.

• The necessity of the null value to indicate a missing value.

3.2. ‘BIG DATA’ CLASSIFICATIONS 45

• Most implementations provide some form of data consistency. However, there are

a number of distinct consistency models. For example Cassandra is a ‘Big Data’

implementation and provides eventual consistency whereby replicated data is spread

across multiple nodes and is eventually updated. HBase provides an immediate con-

sistency model and updates are applied to all the replicated copies.

• Backups are not always implemented or practical due to the size of the actual ‘Big

Data’ repositories and are split across any number of disks or nodes. This is consid-

ered as an alternative strategy to traditional backups.

• ‘Big Data’ implementations are data driven, unlike in relational databases, where the

structure drives the data not where the data drives the structure. There is no longer

the requirement for rigid data description to represent the data.

• It can use a lot of attributes. In the past, you might have been dealing with hundreds

of attributes or characteristics of that data source. Now you might be dealing with

hundreds of gigabytes of data that consists of thousands of attributes and millions of

observations. Data analytics and processing is now happening on a larger scale.

With the rapid decline in storage prices and the increased availability of large cheap com-

modity hardware, the need to delete data due to restricted storage demands has come to an

end. Many storage hardware devices are designed to expand as the needs of their customers

grow.

3.2 ‘Big Data’ Classifications

‘Big Data’ describes a set of technologies for the storage, manipulation and retrieval of

large data sets. Usually these data sets exceed some limit that current technologies are

unable to support. The large data volumes also require fast access times, however there

are two distinct requirements in this area, the first being able to retrieve all or some of the

data in a time that is pertinent to the decision time.

Data within a ‘Big Data’ store does not have to be tabular. There are four storage

models that have dominated ‘Big Data’ implementations:

46 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

Joe

Bill

Mary

John

parent

parent

likes

friend of

hates

likes

sibling

sibling

child of

Figure 3.3: Linked structure representation

1. Tabular where data is stored as tables similar to the relational data bases as Postgreql,

DB2, Oracle, SQLServer and MySQL.

2. Columnar where data is stored as columns rather than the rows. Example of this type

of implementation include Apache Cassandra and Apache HBase.

3. Name/Value pairs where there are no rows but a collection of pairs. The name is

always the index or identifies the associated value. Example of a name/value database

is Berkeley DB.

4. Graphical where the data represented by a graph or a series of interconnected nodes

and links between those nodes (see Figure 3.3). These fall into the following cate-

gories:

• RDF/Triple (Semantic) Stores, and

• Native Graphical Data Bases which include implementations as Neo4j.

Whatever the storage model their implementation must be able to deal with large

amounts of data. ‘Big Data’ technologies are described as NoSQL (not only SQL) that

3.2. ‘BIG DATA’ CLASSIFICATIONS 47

Figure 3.4: The database landscape

the SQL language support is optional. Generally, ‘Big Data’ products are purpose built to

handle the three ‘V’ and sometimes at the expense of simple to use interrogation languages.

The number of potential ‘Big Data’ implementations is growing at an unprecedented

rate and this cannot be better demonstrated as in Figure 3.4 which shows the plethora of

products that either process and or store data. This does present problems for any potential

analyst to attempt to determine what is the most appropriate product that may suite their

needs.

48 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

3.2.1 NoSQL Classification

NoSQL is a whole new way of thinking about a database. NoSQL is not a relational

database. The reality is that a relational database model may not be the best solution for all

situations. The easiest way to think of NoSQL is that of a database which does not adhere to

the traditional relational database management system (RDMS) structure (Menegaz, 2012).

The delineation between NoSQL and SQL systems is that NoSQL systems are specifically

designed to contain large data sets at the sacrifice of SQL like interrogation language. In

many cases only an application programming interface (API) is provided to both interrogate

and store data. Until a standard query language is announced by an international committee

that will be the case for some time to come.

3.2.1.1 NoSQL Characteristics

Cassandra and HBase have borrowed much from the original Bigtable definition. In fact,

whereas Cassandra descends from both Bigtable and Amazon’s Dynamo, HBase describes

itself as an ‘open source Bigtable implementation.’ As such, the two share many charac-

teristics which include:

• NoSQL databases, a term which generally means that there is no SQL language

support.

• Designed to manage extremely large data sets.

• Data is distributed amongst multiple nodes. This means all the data can be accessed

from any one of these nodes.

• Near linear scalability. Therefore, doubling the capacity of the system requires dou-

bling the capability of the throughput.

• Replication is used to safeguard data loss.

‘Big Data’ sets can be so large that it is not possible to fit them within a single data centre,

in this case, clustering is used to disseminate the data across multiple nodes. These data

nodes do not necessarily belong to the data owner. Cloud computing has made it possible

3.2. ‘BIG DATA’ CLASSIFICATIONS 49

to out-source the management of the data to another organization. ‘Big Data’ relies on

big infrastructure and with the emergence of cloud computing this has made it possible for

small organizations to extend their infrastructure well beyond their capabilities.

3.2.2 Columnar NoSQL Databases

Columnar implementations are a class of ‘Big Data’ implementations that store data in

columns rather than rows. This style of ‘Big Data’ repository was first introduced by

Google with their Big Table implementation.

‘Big Data’ is described by Google as:

“Bigtable is a distributed storage system for managing structured data that is

designed to scale to a very large size: petabytes of data across thousands of

commodity servers. Many projects at Google store data in Bigtable, including

web indexing, Google Earth, and Google Finance. These applications place

very different demands on Bigtable, both in terms of data size (from URLs to

web pages to satellite imagery) and latency requirements (from back-end bulk

processing to real-time data serving). Despite these varied demands, Bigtable

has successfully provided a flexible, high-performance solution for all of these

Google products. In this paper we describe the simple data model provided by

Bigtable, which gives clients dynamic control over data layout and format, and

we describe the design and implementation of Bigtable (Chang, 2006).”

The difference between relational and columnar databases is that data is stored in columns

and not rows. However, columnar databases utilise a single key to relate all the columns

together (see Figure 3.5). Unlike relational implementations compound keys are not per-

mitted. Some implementations permit secondary indexes but only on predefined columns

which is commonly referred to as column families. Columnar data bases are restricted to

column families which for most implementations support secondary indexes where the col-

umn’s name determines the index field and value. A limitation with this approach is that

range queries are not possible and the rows cannot be returned in a specific order. Nonethe-

less, if range queries are not required secondary indexes provides an alternate access to the

data.

50 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

t1 k1 t2 c1 c2 c3 c4 c5 c6 c7

Key
Columns

Figure 3.5: Columnar data storage representation

This provides some significant advantages for analytical processes and ad hoc queries

and provides the additional benefit in that less disk space is used as with traditional

RDBMS. Another advantage is that when selecting records in a query process, it is only

necessary to read the columns that are included as qualifiers and not the entire row and

stated by Bhatia and Patil “When columns are stored in a sorted sequence, the response

speed improvement can be even greater (Bhatia and Patil, 2011)”.

The primary disadvantage of columnar databases there is no established formal query

language as with relational databases which is structured query language or SQL. Further-

more, the approach taken by vendors to secondary indexing strategies is inconsistent across

Columnar implementations.

3.2.2.1 Cassandra

Cassandra was initially created by Facebook to provide search functionality for a user’s

mailbox. The source code was open sourced and released to the Apache Software

Foundation. Its design was inspired by both Google’s Bigtable and Amazon’s Dynamo. It

is considered to be a column data store, similar to a Google Bigtable or Apache HBase.

Cassandra is part of the open source communicate and is still actively developed. In

addition, Cassandra exposes a number of application programming (API) interfaces. The

interface known as thrift provides a basic and yet complex interface to all the functions

available to Cassandra.

Cassandra consists of the following key components (Datastax, 2014):

3.2. ‘BIG DATA’ CLASSIFICATIONS 51

• Cluster: a container for one or more keyspaces. A Cassandra instance may contain

only one cluster however the cluster may be spread across one or more computers.

• Keyspaces: a container for column families. A keyspace is analogous to a schema in

a relational database.

• Column families: analogous to a table in a relational database which may contain an

unlimited number of rows and up to four billion columns. Each row within a column

family must have a single unique key to identify the row.

• Columns: A column is a name-value pair. The name may contain 64 Kilobytes of

data and there is no real limitation to the size of the value.

3.2.2.2 Apache HBase

HBase is a column-oriented database management system that runs on top of HDFS. and

well suited for sparse data sets. Unlike relational database systems, HBase does not support

a structured query language like SQL; in fact, HBase is not a relational data store at all.

HBase applications are written in Java much like a typical Map-Reduce application. Unlike

Cassandra, HBase does support writing applications in Avro, REST, and Thrift. Each table

contains rows and columns, much like a traditional database. Each table must have an

element defined as a Primary Key, and all access attempts to HBase tables must use this

Primary Key. HBase allows for many attributes to be grouped together into what are known

as column families, such that the elements of a column family are all stored together. This

is different from a row-oriented relational database, where all the columns of a given row

are stored together. With HBase you must predefine the table schema and specify the

column families. However, it is very flexible in that new columns can be added to families

at any time, making the schema flexible and therefore able to adapt to changing storage

requirements. Just as HDFS has a Name-Node and slave nodes, and Map Reduce has

JobTracker (Zookeeper is used to perform this function) and Task-Tracker slaves, HBase

is built on similar concepts. HBase has a master node that manages the cluster and region

servers, stores portions of the tables and performs the work on the data. In the same way

52 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

that HDFS has some enterprise concerns due to the availability of the Name-Node, HBase

is sensitive to the loss of its master node.

3.2.2.3 Apache Accumulo

Apache Accumulo is ‘the new kid on the block’ and similar to HBase in many ways except

for one notable feature in that Accumulo can secure data at the individual cell level. This

was a feature requested by the National Security Agency as security was overlooked by

many columnar implementations. Apache Accumulo is based on Google’s Bigtable design

and is built on top of Apache Hadoop, Zookeeper, and Thrift.

3.2.2.4 Cloud Columnar Offerings

There are number of columnar databases that are worth mentioning but they differ because

these implementations are columnar storage offered by cloud providers. This includes

Amazon’s Redshift and Google’s Bigtable. Both are columnar storage options as part of

their Cloud Platform. Amazon describes this platform:

“Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse so-

lution that makes it simple and cost-effective to efficiently analyze all your

data using your existing business intelligence tools. You can start small for just

$0.25 per hour with no commitments or upfront costs and scale to a petabyte

or more for $1,000 per terabyte per year, less than a tenth of most other data

warehousing solutions (Amazon, 2014).”

3.3 The Semantic Web

The semantic database or ‘triple store’ is a technology that is gaining popularity and can be

used to store semi-structured data in a graphical manner and record relationships between

specific data items. A triple store is a purpose-built database for the storage and retrieval

of triples, a triple being a data entity composed of subject-predicate-object.

Much like a relational database, one stores information in a triple store and retrieves it

via a query language. Unlike a relational database, a triple store is optimized for the storage

3.3. THE SEMANTIC WEB 53

Sub ject Ob ject
Predicate

Figure 3.6: The triplet structure

and retrieval of triples. In addition to queries, triples can usually be imported/exported

using Resource Description Framework (RDF) data descriptions and other formats. Some

triple stores can store billions of triples.

RDF is a standard model for data interchange on the Web. RDF has features that fa-

cilitate data merging even if the underlying schema differs, and it specifically supports the

evolution of schemas over time without requiring all the data consumers to be changed.

Figure 3.7: A directed graph structure

RDF extends the linking structure of the

Web to use URIs to name the relationship be-

tween things as well as the two ends of the link

(this is usually referred to as a “triple”). Us-

ing this simple model, it allows structured and

semi-structured data to be mixed, exposed, and

shared across different applications. This link-

ing structure forms a directed, labelled graph,

where the edges represent the named link be-

tween two resources, represented by the graph

nodes. This graph view is the easiest possible

mental model for RDF and is often used in easy-

to-understand visual explanations.

The triplet is a data structure composed of a subject, predicate and object where the

predicate binds the subject to the object (see Figure 3.6). The subject and predicate must

conform to the Uniform Resource Specification (URI) as described by Tim Berner-Lee

in 1991 (Berners-Lee, 1991). The URI which is also referred to as a resource provides

the mechanism to link or associate one or more triplets. The object component of the

triplet serves dual purposes. If the object contains a resource this identifies a directed link

between this triplet and other triplets within the graph (see Figure 3.7). However, if the

54 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

object contains a literal value then this is the data associated with the triplet. If the object

does contain a literal value then additional information is stored to identify the literal’s

primitive type.

A special resource type, the blank resource is similar to to the URI but is merely used

to group triplets together. Blank nodes can only be used as a subject or object resource

identifier.

An extension to the triplet specification is the graph identifier. Like the subject and

predicate, the graph identifier is represented by a resource. The graph identifier sometimes

called the triplet’s context provides a mechanism to group large numbers of triplets together.

The context can be used as an extra dimension to the triplets contained within the graph.

Uses of the context are as follows:

• Identify the source of the data. This can also be used to determine the triplet’s prove-

nance.

• A temporal dimension for the triplets.

• The owner of the triplets.

• The security (authorization) classification.

The W3C specification Resource Definition Framework (RDF) is a specification that de-

scribes structure and formal representation of the triplet structures (W3C Working W3C,

2014). The RDF necessary to describe the structure required to capture the ingredients that

are contained within Chutney is shown in Figure 3.8.

W3C defines a language specification SPARQL (Simple Protocol and RDF Query Lan-

guage) and is an RDF triplet querying language (W3C, 2008a). SPARQL provides a speci-

fication to retrieve triplets based on one or more graph patterns. An example of a SPARQL

query is shown in Figure 3.9. The SPARQL language specification also extends to the for-

mat in which the triplets are returned. The formats include: XML, N3 and JSON. The basic

SPARQL retrieval patterns that are necessary to implement the select statement are shown

in Figure 9.6.

3.3. THE SEMANTIC WEB 55

@pref ix ex : < h t t p : / / example . o rg / > .
@pref ix r d f : < h t t p : / / www. w3 . org / . . . # >
ex : Chutney ex : h a s I n g r e d i e n t ex : i t em1 .
ex : Chutney ex : h a s I n g r e d i e n t ex : i .
ex : i t em1 r d f : v a l u e ex : greenMango .
ex : i t em1 r d f : amount "50gm " .
ex : i t em2 r d f : v a l u e ex : r e l i s h
ex : i t em2 r d f : amount "20gm"

Chutney

item1 item2

greenMango 50gm relish 20gm

Figure 3.8: RDF to describe the contents of ‘chutney’ and visual representation

s e l e c t ? s u b j ? p red ? o b j
where {

{
? s u b j ? p red ? o b j .
? s t o r e < f u s i o n : / / map> ? s u b j .

} union {
? s u b j ? p red ? o b j .
? s t o r e < f u s i o n : / / schema > ? s u b j .

} union {
? s u b j ? p red ? o b j .
? s t o r e < f u s i o n : / / model > ? s u b j .

}
}

Figure 3.9: SPARQL language example

56 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

3.3.1 RDF Data Structures

The Resource Definition Framework has identified and defined four major data structures

which are the following:

• Bag - is a collection of triplets with no specific order.

• Sequence - is a collection of triplets where the order matters.

• Alternate - is a collection of triplets, however only one triplet can ever be selected.

• List - is a generic specification for a linked list structure (see Figure 5.21 as an ex-

ample of a RDF linked list).

In addition to the standard RDF data structure, the triple store can store triplets and any

linkage pattern (Hitzler et al., 2010) (see Figure 3.7 as an example of an undirected graph).

The RDF list structure is designed to accommodate large ordered lists . The list has

a node that represents the list’s head and is terminated by the ‘nil’ RDF resource which

represents the list’s tail (W3C, 2014). Each RDF node within the list contains a link both to

the data and to the next item within the list and these links are are represented by the RDF

‘first’ and RDF ‘next’ predicates respectively (see Figure 5.21). There is no restriction to

the number of nodes contained within a linked list.

3.3.2 The SPARQL Language

SPARQL is a language that allow the interrogation and manipulation of triple stores. Even

though SPARQL does resemble SQL, there is little in common except a few key words

between the two languages. SPARQL has four retrieval constructs unlike SQL which only

has one, the select statement. However, unlike SQL which deals with tabular data struc-

tures, SPARQL operates on graph data and each data item contains the name (subject), the

value (object) and the relationship between the name and object (predicate). Another key

difference between the relation database is that there is no need for a ‘null’ value in relation.

3.3. THE SEMANTIC WEB 57

Data:
@pref ix f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / > .
_ : a f o a f : name " Johnny Lee Outlaw " .
_ : a f o a f : mbox < m a i l t o : jlow@example . com> .
_ : b f o a f : name " P e t e r Goodguy " .
_ : b f o a f : mbox < m a i l t o : pe ter@example . org > .
_ : c f o a f : mbox < m a i l t o : carol@example . org > .

Query:
PREFIX f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / >
SELECT ?name ?mbox
WHERE { ? x f o a f : name ?name .

? x f o a f : mbox ?mbox }

Result:
name mbox

"Johnny Lee Outlaw" <mailto:jlow@example.com>
"Peter Goodguy" <mailto:peter@example.org>

Figure 3.10: SPARQL example

3.3.3 The Triple Store

A triple store is framework used for storing and querying RDF data. Triple Stores provides

a mechanism for persistent storage and access of RDF graphs. Recently there has been a

major development initiative in query processing, access protocols and triple-store tech-

nologies. The number of triple stores being actively developed has increased from Jena

and Sesame in the early 2000s to Garlik JXT, YARS2, BigOWLIM, Jena TDB, Jena SDB,

Virtuoso, AllegroGraph, BigData, Mulgara, Sesame, Kowari, 3Store and 4Store. Others

like BigOWLIM and AllegroGraph are commercially available and the rest are all free and

open source. Only the freely available open source triple stores were considered and hence

the choice of Jena SDB, Sesame, Mulgara and Virtuoso.

Triple stores can be divided into 3 broad categories which are: in-memory, native,

non-memory non-native - based on architecture of their implementation. In-memory triple

stores store the RDF graph in main memory and usually outperform their counterparts at

the expense of not being able to store large data volumes. However, this classification is

58 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

useful to cache results from SPARQL queries or performing certain operations like caching

data from remote sites or for performing inference analysis on small graph structures. Most

of the in-memory stores have efficient reasoners available and can help solve the problem

of performing inferencing in persistent RDF stores, which otherwise can be very difficult

to perform. A second, now dominant category of triple stores is the native triple stores

which provide persistent storage with their own implementation of the databases, for ex-

ample, Bigdata, Virtuoso, Mulgara, AllegroGraph and Garlik JXT. The third category of

triple stores, the non native non memory triples stores, are set up to run on third party

databases for example Jena SDB which can be coupled with almost all relational databases

like MySQL, PostgreSQL and Oracle. Oracle has recently announced an implementation

based on BerkleyDB. Recently native triple stores, due to their superior load times and

ability to be optimized for RDF, have gained popularity with intelligence organisations.

The approach taken is to acknowledge that generally most triplets have low predicate

cardinality compared to subjects and objects. No current triple store implementation takes

account of this. In addition, RDF structures such as list, bags, sequences and alternates are

not treated differently than other predicate types. These W3C predefined data structures

demonstrates the suitability of the Columnar Storage implementations suitable to contain

triples and implement the SPARQL specification.

Ontological structures (Ontologies) are also key to many semantic web applications.

Ontologies are formal logical descriptions, or models, of some aspect of the real-world

that applications have to deal with. Ontologies can also be shared with other developers

and researchers, making it a good basis for building linked-data applications. There are

two ontology languages for RDF: RDFS, which is rather weak and does not represent

complicated ontological structures, and OWL, which is much more expressive.

Not all triplet patterns need to be supported by the implementation. it is not uncommon

that the object component of the triplet is accessible via an external index. For example,

if the object contains a person’s name SPARQL will only support an exact match and not

consider name variations and misspellings. It is more likely that a specialized index is

constructed specifically tailored to search a person’s name. Sesame Lucene implemen-

tation allows an object value to be searched for phonetically. Therefore, the triple store

3.3. THE SEMANTIC WEB 59

Storage Type Implementations Comment

Document Orientated MongoDB

Columnar

Cassandra

No RDF support
HBase
Accumulo

Key Value

Berkley DB
Becoming more
popular as an RDF
platform

Dynamo
Redis
Riak

Graph Database
Neo4j

Some RDF Support
via TinkerpopOpenLink Virtuoso

AllegroGraph

RDF Native

Bigdata A Sesame SAIL
exists

BigOWLIM
Mulgara A Sesame SAIL

exists
Virtuoso Supports both

Sesame and Jena

Table 3.1: Comparison of triple store storage implementations

60 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

Requirement Virtuoso Oracle OWLIM Allegro Bigdata Mulgara 4Store Sesame Stardog B* DB2 Jena

Open source ! # # # ! ! ! ! # # # !

> 10 billion ! # ! ! ! ! ! ! ! ! ! #

Clustering ! ! ! ! ! ! # # ! ! ! #

SPARQL 1.1 # ! ! ! ! ! ! ! ! ! ! !

SPARQL Update ! ! ! ! ! ! ! ! ! ! # !

Property Path # # # # # # # ! # # # !

Table 3.2: Triple store implementations (Garshol, 2012)

serves two purposes in the representation of graph structures and capability to search ob-

ject stores. Furthermore, the triple store can contain tabular structures similar to that of

relational database implementations. Unlike relational database implementations, complex

graph structures can be easily represented and stored within an RDF triple store. Also,

with the addition of the Graph predicate this provides a mechanism to logically separate

large inter-related linked structures. Implementations like R2RML and SDshare are not

true triple stores in that they do not support the SPARQL language.

3.3.3.1 Apache Jena

The Apache Jena framework was originally developed by Hewlett Packard in their Bristol

laboratories in 2010 and subsequently given to the Apache Foundation. Since leaving

incubation status in April 2012, Apache Jena is now a top-level product. The framework

contains a SPARQL parser (Jena ARQ) which transforms the SPARQL query into one or

more triple patterns (see Table 9.6).

Jena provides a collection of tools and Java libraries to help you to develop semantic web

and linked-data apps, tools and services. OWL and RDFS are both supported in Jena

through the Ontology API, which provides convenience methods that know about the

richer representation forms available to applications through OWL and RDFS. Jena has

been extended to include Lucene search capabilities, geospatial support and a number of

physical storage implementations are available via their TDB interface.

The Jena Framework onion-ring includes (see Figure 3.11):

3.3. THE SEMANTIC WEB 61

TDB/SDB/Other

ARQ

SPARQL

Figure 3.11: The Apache Jena platform

• an API for reading, processing and writing RDF data in XML, N-triples and Turtle

formats.

• an ontology API for handling OWL and RDFS ontologies.

• a rule-based inference engine for reasoning with RDF and OWL data sources.

• stores to allow large numbers of RDF triples to be efficiently stored on disk. There

are two ‘out-of-the-box’ engines which are: TDB is a file based triple database, and

SDB uses an SQL database for the storage and query of RDF data.

• a optimized query engine compliant with the latest SPARQL specification. This

query engine is known as ARQ and supports both TDB and SDB.

• services to allow RDF data to be published to other applications using a variety of

protocols, including SPARQL and REST.

62 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

The Jena development team have developed a separate engine (ARQ) which processes

SPARQL statements and translates the request to a database retrieval. This provides in-

dependence between the triplet storage and the storage of the triplets themselves. Jena

does however provide a number of reference implementations: TDB is a native file based

triple storage provider and SDB is an interface specification targeted to support relational

databases.

3.3.3.2 OpenRDF - Sesame

Sesame is an open source Java framework for querying and storing RDF data; it was

originally developed by the Dutch Company Aduna as a research prototype for the

European Union research project On-To-Knowledge. Aduna describes Sesame as:

“Sesame is an open source Java framework for storage and querying of

RDF data. The framework is fully extensible and configurable with respect

to storage mechanisms, inferences, RDF file formats, query result formats and

query languages. Sesame offers a JBDC like user API, streamlined system

APIs and a RESTful HTTP interface supporting the SPARQL Protocol for RDF

(Aduna, 2013).”

Sesame is now an open-source project and has a large active development community.

There are a large number of reference storage implementations which include MYSQL,

PostgresDB, Oracle, ‘Bigdata’ and there own file base storage. Aduna’s Sesame is a popu-

lar triple storage implementation providing the infrastructure and SPARQL support.

Sesame storage has their own SAIL implementation where the SAIL (Storage And

Inference Layer) is a low level System API (SPI) for an RDF store and inferencer (see Fig-

ure 3.12). The SAIL defines the abstraction layer between the SPARQL language processor

and the triple storage.

3.3.3.3 Mulgara

Mulgara is a native RDF triple store written in Java and provides a Connection API that can

be used to connect directly to the Mulgara store. Mulgara’s ‘load’ script can be used to bulk

3.4. SUMMARY 63

Application
APIs (SAIL)

Application Hook

RDF Store Systap BigdataOracle Implementation

Figure 3.12: Sesame API SAIL structure

load RDF data into the triple store. The TQL shell which is a command line interface can

be used to perform SPARQL queries and add, delete or modify triplets contained within

the store. Mulgara also provides basic graph support.

3.3.3.4 Virtuoso

Virtuoso is a native triple store available in both open source and commercial licenses. It

provides a command line bulk loader, a connection API, support for SPARQL and web

server to perform SPARQL queries and can also upload data over this interface. A number

of evaluations have tested Virtuoso and found it to be scalable to the region of one billion

triplets. In addition to this, Virtuoso provides bridges for both the with Jena and Sesame

platforms.

3.4 Summary

This chapter has explored the ‘Big Data’ world and how this has come to ultimately change

how intelligence organizations such as ACC must deal with data management issues. There

was a detailed examination of ‘Big Data’ products which includes both the columnar and

graph classifications. The impact of ‘Big Data’ has a profound effect on the Intelligence

Life-Cycle and the advent of the triple store which can both capture knowledge and process

large data sets.

64 CHAPTER 3. THE ‘BIG DATA’ PERSPECTIVE

The next two chapters will focus on data variability and processing. There are two

main identifiable approaches the ‘Schema-First’ and ‘Schema-Last’. The ‘Schema-Last’

approach will be shown to be superior to the ‘Schema-First’ and how this approach signif-

icantly improved the collation and process of data within the Intelligence Life-cycle.

Chapter 4

‘Schema-First’: The Current Approach

Schema is from the Greek word meaning ‘form’ or ‘figure’ and is a formal representation of

data model which has integrity constraints controlling permissible data values. This chapter

will examine the existing data modelling techniques and how these techniques relate to

data presentation and storage. Data is sometimes corrected to comply to a Schema. This

approach is referred to as ‘Schema-First’ where changes to the Schema mean changes in

the data and changes in the data will require changes made to the Schema. The usual start

in designing an information system is to create a conceptual schema that models the data

structure. After the conceptual schema is finalized, this schema is then implemented on

a target platform such as a relational system, a hierarchical system, or an object-oriented

system. To this end, the conceptual schema is transformed (mapped) to a schema on the

chosen target platform. The entire (data) modelling process can be seen as a transformation

process of data schema, where a data schema can be an Entity Relationship schema, an

Object-Role Modeling schema, a relational schema, or any other internal representative

schema.

Schema is used to describe relational tabular, hierarchical or graph structures. Usually,

schema is used to identify how the data is to be stored or transported. For sources without

schema, such as files, there are few restrictions on what data can be entered and stored, giv-

ing rise to a high probability of errors and inconsistencies. Database systems, on the other

65

66 CHAPTER 4. ‘SCHEMA-FIRST’: THE CURRENT APPROACH

hand, enforce restrictions of a specific data model (for example: the relational approach re-

quires simple attribute values, referential integrity, et cetera) as well as application-specific

integrity constraints.

A schema can be seen as an application. After the conceptual schema has been fi-

nalized, one can sometimes perform small (equivalence preserving) transformations on a

schema which result in a schema that allows for a more efficient implementation. These

transformations typically utilize the rich semantics and clarity of a conceptual schema. Per-

forming such transformations after all schema definitions have already been mapped to a

target platform usually becomes too complicated, since these schema definitions use less

concise modeling concepts. This makes it both harder to define the transformations, and

harder for the information system designers to track the transformations. Following the

optimization transformations, the schema is consequently mapped to a target platform. For

the different conceptual modeling techniques there are different mapping algorithms fol-

lowing varying styles and strategies. Once a conceptual schema has been transformed to

some sort of representation for a target platform, this schema can sometimes be optimized

even further. There are five key distinguishable classes of schema transformations:

1. Conceptual schema refinements.

2. Conceptual schema quality improvements.

3. (Conceptual) schema optimizations.

4. Conceptual to internal (logical) schema mapping

5. Internal schema optimizations.

For a more elaborate discussion on the classes of schema transformations, presently, the

reverse process of the transformations in four and five also receives much attention in the

database and information systems research community. This reversed process is referred

to as reverse engineering. For this fairly new area also a wide range of strategies and

algorithms exists. These algorithms all operate on the basis of a set of possible schema

transformations and heuristics to best apply to them. The above discussed five classes ei-

ther operate on a conceptual data schema or an internal schema of a given implementation

4.1. SCHEMA APPLICATION 67

platform. The modelling process until the start of the internal schema mapping can be re-

garded as a journey through a universe of data schemas. This universe of data schemas must

be rich enough so that the data schemas can include both details relevant for a conceptual

presentation as well as the internal representations.

4.1 Schema Application

The ‘Schema-First’ may mean a loss of data quality at any one of these stages and reduce

the applicability. These include (Chapman, 2005):

• Data capture and recording at the time of gathering.

• Data manipulation prior to digitization (label preparation), identification of the col-

lection and its recording.

• Digitization of the data.

• Documentation of the data (capturing and recording the meta-data).

• Data storage and archiving.

• Data presentation and dissemination (paper and electronic publications, web-enabled

databases, et cetera).

• Data use (analysis and manipulation). All these have an input into the final quality or

‘fitness for use’ of the data and all apply to all aspects of the data – the taxonomic or

nomenclature portion of the data – the ‘what’, the spatial portion – the ‘where’ and

other data such as the ‘who’ and the temporal ‘when’.

The traditional approach is to describe data attributes prior to the data insertion (see Figures

4.1 and 4.2). A schema is a term that applies a specification to the data before any data can

be inserted. For example, relational databases require a table structure to be defined which

contains the column definitions that each row must conform to that specification. There

are restrictions placed on what can and cannot be changed to the table schema. However,

what is difficult to change is the structure of the data and the data objects are relationships.

68 CHAPTER 4. ‘SCHEMA-FIRST’: THE CURRENT APPROACH

Typically, the ‘Schema-First approach utilizes a normalized data model. This set of data

schemas is defined by the data schema language. This language must be rich enough to

allow us to model both the conceptual aspects of a data schema as well as internal repre-

sentation aspects into one single model.

c r e a t e t a b l e sample (

f i r s t _ n a m e varchar (2 5 6) not n u l l primary key ,

surname varchar (2 5 6) not n u l l primary key ,

d a t e _ o f _ b i r t h date not n u l l primary key
) ;

Figure 4.1: Example relational table definition

The ‘Schema-First’ model de-

mands data analysis up front. The

columns, rows and data types must be

defined. In addition, foreign key re-

lationships between the various tables

must be known. In general the foreign

keys must be supported by an index

otherwise the search and update per-

formance may be adversely affected.

4.2 Ontology First

Ontology is technology that can be described as knowledge about knowledge. The term is

described as:

“The word ‘ontology’ seems to generate a lot of controversy in discussions

about AI. It has a long history in philosophy, in which it refers to the sub-

ject of existence. It is also often confused with epistemology, which is about

knowledge and knowing.

In the context of knowledge sharing, I use the term ontology to mean a spec-

ification of a conceptualization. That is, an ontology is a description (like a

formal specification of a program) of the concepts and relationships that can

exist for an agent or a community of agents. This definition is consistent with

the usage of ontology as set-of-concept-definitions, but more general. And it

is certainly a different sense of the word than its use in philosophy (Gruber,

1993).”

4.2. ONTOLOGY FIRST 69

<? xml v e r s i o n = ’ 1 . 0 ’ e n c o d i n g = ’UTF−8 ’ ?>
< xs : schema x m l n s : t n s =" h t t p : / / s e a r c h . f u s i o n . acc . gov . au / s e r v i c e s "

x m l n s : x s =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema"
e l e m e n t F o r m D e f a u l t =" q u a l i f i e d "
v e r s i o n =" 1 . 0 " t a r g e t N a m e s p a c e =" h t t p : / / s e a r c h . f u s i o n . acc . gov . au / s e r v i c e s ">

< x s : e l e m e n t name=" t e m p l a t e ">
< xs :complexType >

< x s : s e q u e n c e >
< x s : e l e m e n t name=" p r o p e r t i e s " t y p e =" t n s : p r o p e r t y "

n i l l a b l e =" t r u e " minOccurs=" 0 " maxOccurs=" unbounded " / >
< x s : e l e m e n t name=" d e c l a r a t i o n " t y p e =" t n s : f i e l d " n i l l a b l e =" t r u e "

minOccurs=" 0 " maxOccurs=" unbounded " / >
< x s : e l e m e n t name=" s p e c i f i c a t i o n " t y p e =" t n s : f i e l d "

n i l l a b l e =" t r u e " minOccurs=" 0 " maxOccurs=" unbounded " / >
< x s : e l e m e n t name=" r e t r i e v a l P a c k a g e " t y p e =" t n s : r e t r i e v a l P a c k a g e "

n i l l a b l e =" t r u e " minOccurs=" 0 " maxOccurs=" unbounded " / >
< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" name " t y p e =" x s : s t r i n g " use =" r e q u i r e d " / >

< / xs :complexType >
< / x s : e l e m e n t >
< xs :complexType name=" r e t r i e v a l P a c k a g e ">

< x s : s e q u e n c e >
< x s : e l e m e n t name=" p r o p e r t i e s " t y p e =" t n s : p r o p e r t y " n i l l a b l e =" t r u e "

minOccurs=" 0 " maxOccurs=" unbounded " / >
< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" name " t y p e =" x s : s t r i n g " use =" r e q u i r e d " / >

< / xs :complexType >
< xs :complexType name=" p r o p e r t y ">

< x s : s e q u e n c e >
< x s : e l e m e n t name=" v a l u e " t y p e =" x s : s t r i n g " n i l l a b l e =" t r u e "

minOccurs=" 0 " maxOccurs=" unbounded " / >
< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" name " t y p e =" x s : s t r i n g " use =" r e q u i r e d " / >

< / xs :complexType >
< xs :complexType name=" f i e l d ">

< x s : s e q u e n c e >
< x s : e l e m e n t name=" v a l u e " t y p e =" x s : s t r i n g " minOccurs=" 0 " / >
< x s : e l e m e n t name=" t y p e " t y p e =" x s : s t r i n g " minOccurs=" 0 " / >
< x s : e l e m e n t name=" p r o p e r t i e s " t y p e =" t n s : p r o p e r t y "

n i l l a b l e =" t r u e " minOccurs=" 0 " maxOccurs=" unbounded " / >
< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" name " t y p e =" x s : s t r i n g " use =" r e q u i r e d " / >

< / xs :complexType >
< / xs : s chema >

Figure 4.2: Example XSD definition

70 CHAPTER 4. ‘SCHEMA-FIRST’: THE CURRENT APPROACH

Most commercial products that support ontology structures apply ontology on data inges-

tion. In addition, modification to the ontology structure may require a complete data unload

or reload. Products like Palantir and IBM’s Analyst Notebook supported limited ontologi-

cal structural changes in that additional structures may be added but once added are difficult

or impossible to change.

4.3 Data Cleansing and the ‘Schema-First’ Approach

Data cleaning, also called data cleansing or scrubbing, deals with detecting and remov-

ing errors and inconsistencies from data in order to improve the quality of data. This is

an integral part of the ‘Schema-First’ approach in that for any data to be ingested into a

schema-managed repository must strictly comply to the rules laid out by the schema def-

inition. Therefore, data that does not strictly comply to the schema definition cannot be

ingested. Invalid data may simply be a result of misspellings during data entry, missing

information or other invalid data. When multiple data sources need to be integrated, for

example in data warehouses, federated database systems or global web-based information

systems, the need for data cleaning increases significantly. This is because the sources

often contain redundant data in different representations. In order to provide access to ac-

curate and consistent data, consolidation of different data representations and elimination

of duplicate information become necessary to represent and store the data:

“Data cleansing is the process of analyzing the quality of data in a data source,

manually approving/rejecting the suggestions by the system, and thereby mak-

ing changes to the data. Data cleansing in Data Quality Services (DQS) in-

cludes a computer-assisted process that analyzes how data conforms to the

knowledge in a knowledge base, and an interactive process that enables the

data steward to review and modify computer-assisted process results to ensure

that the data cleansing is exactly as they want to be done (Microsoft, 2012).”

A data cleaning approach should satisfy several requirements. First of all, it should detect

and remove all major errors and inconsistencies both in individual data sources and when

integrating multiple sources. The approach should be supported by tools to limit manual

4.4. ‘SCHEMA-FIRST’ - SCHEMA DEFINITION LANGUAGES 71

inspection and programming effort and be extensible to easily cover additional sources.

Furthermore, data cleaning should not be performed in isolation but together with schema-

related data transformations based on comprehensive meta-data. Mapping functions for

data cleaning and other data transformations should be specified in a declarative way and

be reusable for other data sources as well as for query processing. Especially for data ware-

houses, a work-flow infrastructure should be supported to execute all data transformation

steps for multiple sources and large data sets in a reliable and efficient way. As argued

by David Ruppert an esteemed member of the American Statistics Association when com-

menting on the inconsistent results in relation to statistical sampling:

“Data cleansing can be time-consuming and tedious, but robust estimators are

not a substitute for careful examination of the data for clerical errors and other

problems (Ruppert, 2002).”

Score cards as shown in Table 4.1 are a tool that can determine the range of values for a

nominated field typically within a file or database. The tools can also be used to gener-

ate a standard set of values for the nominated field and then reapplied to the raw data to

standardize the field’s value.

4.4 ‘Schema-First’ - Schema Definition Languages

Gender Frequency

2 3

F 20

M 25

? 5

1 2

Table 4.1: Score card example

Some schema languages are designed for

example purpose, take OASIS The Com-

mon Schema Definition Language (CSDL)

specification. This was designed specif-

ically to describe the OData service.

Other languages like DCOM, CORBA and

other messaging service languages all have

schema definition languages. The structure

of X509 Certificates, PKCS7 messages and

many other cryptographic artefacts are all

described by a Schema Language and in this case it is Advance Syntax Notation 1 (ASN1).

72 CHAPTER 4. ‘SCHEMA-FIRST’: THE CURRENT APPROACH

Variable Name Description Variable Type Valid Values

ID Identifier
Number

Number Numerals

Name Complete name
of the individual

String A-Z, -, space(s)

DOB The person’s date
of birth

Date Dates > 1900

Gender The gender of the
person

Char Values ‘M’ or ‘F’

Address The address of
the individual

String A-Z, 0-9, spaces, dash

Table 4.2: Typical data specification

The application of a schema requires the data to conform to a specific set of rules

which may not all be encapsulated within the schema. For example table 4.2 is the schema

specification used by the ‘Schema-First’ approach. Any data that does not comply with the

specification would be rejected or require some modification. Furthermore, it would not be

uncommon to modify data from data source where gender field could be ’1’ for male ’0’

for female to comply the data specification in Table 4.2 which would be ‘M’ for male and

‘F’ for female. If however the data contains ‘2’ which is unknown then this value does not

comply and some action is required to conform to the schema specification.

Generally, the schema can be modified dynamically where columns may be added, al-

tered or dropped. However, the modification of relational table schema definitions requires

special privileges which may not be granted to the analyst and person performing the data

ingestion task. Another consideration is that the schema modification will alter data within

the relational table even if involves the addition of a null field. Generally, relation data base

designs comply to third normal form where data storage is optimized (Biskup, 1987). Code

tables are used extensively to reduce storage and simplify data base updates.

4.5. DATA INGESTION 73

4.5 Data Ingestion

Data ingestion is a process whereby data is taken from a initial state or data source and

modified so that it can be stored and processed by the analytical indexes or consumed by

other systems. The data ingestion is the initial process of the data collation phase of the

Intelligence Life-Cycle. Many data base and third-party vendors provide tools to perform

this process.

4.5.1 Human Cleansing

Often the data cleansing is a manual process where a human manually trawls through the

data and corrects typographical errors or makes some determination of what the data repre-

sents. The data for example may be a list of ratepayers in a capital city. The ratepayer may

be a household owner (owner occupier) or an organization. The council does not distin-

guish (or probably care) if the ratepayer is an individual or organization as long as the rates

are paid. This does however present a problem where this may matter for an intelligence

gathering. Is it David Jones the person or David Jones the organization. If this does matter

to intelligence gathering then additional information would be required to determine the

correct resolution.

4.5.2 Automated Cleansing

Automated cleansing is where a set of automated rules are applied to the data and can

modify, merge or split the data into a format suitable for ingestion. Regular expressions, are

suitable to determine, match or extract parts contained within a name. A challenge with this

approach within the ACC is that the coercive powers cannot dictate to an organization the

form or structure of the data. Organisations often present data over different time periods

in a different structure. This poses a significant impost on any automated process, however

the majority of the data does come in the form of a comma separated file (csv) which

is relatively simple to automate. Some outliers are more difficult to process and may be

impossible to automate. This process or technology is referred to as Extract, Transform

and Load (ETL).

74 CHAPTER 4. ‘SCHEMA-FIRST’: THE CURRENT APPROACH

4.5.3 Extract Transform Load

Extract is the process to obtain data from an external sources. The source may be a re-

lational table, a file system and so forth. The transformation step is the process which

describes the modification of the input into form where the data can be loaded into the

target system. This step may also reject certain data if it cannot be loaded. The load is the

final step where the the transformed data is loaded into the target system.

ETL tools have been around since the mid 1990s and have gained acceptance as a data

migration and transformation technology. ETL tools serve two very specific and distinct

purposes which are (Henry et al., 2005):

1. To provide a development environment that is easy to manage and embedded into the

graphical interface.

2. To provide increased throughput, which increases the productivity of the user.

The increased throughput is achieved by separating data management from data access.

In addition, used together, ETL tools provide a complete solution to move data from one

system to another.

There is also no guarantee that the data source maintains the same format of the data

and is required by law to inform the ACC that the structure or format of the data source has

changed. In addition, the organization that supplied the data is not required to provide an

explanation of what the fields mean or indicate. This can create problems that can introduce

error into the data cleansing process.

4.6 ‘Schema-First’ and the Intelligence Life Cycle

Currently, the ‘Schema-First’ Approach is the intelligence collection and storage frame-

work chosen by most law enforcement agencies. This approach lends itself to relational

technologies and products like IBM’s Analyst Notebook and Palantir which take advantage

of this approach. In addition, most of the popular ETL tools work well with this platform.

The volume and velocity of data is not slowing and the process is described as:

4.6. ‘SCHEMA-FIRST’ AND THE INTELLIGENCE LIFE CYCLE 75

Initiate

Extract

Determine

Suitablity

Transform

Assessment?

Load

Report

Complete

n

y

n

y

Figure 4.3: Extract Transform Load process

76 CHAPTER 4. ‘SCHEMA-FIRST’: THE CURRENT APPROACH

“...the need to answer questions with data won’t go away and access to new

data sets won’t go way. Instead of worrying about the difficulty of getting

clean data, build skills on your team so you can create clean data sets and

come up with new insights faster than the competition (Lohr, 2014).”

Timothy Weaver, the chief information officer of Del Monte Foods, calls the predicament

of data wrangling data as:

“iceberg issue, meaning attention is focused on the result that is seen rather

than all the unseen toil beneath. But it is a problem born of opportunity. In-

creasingly, there are many more sources of data to tap that can deliver clues

about a company’s business (Lohr, 2014).”

Data formats are one challenge that the intelligence community must respect and solve. It

is not always possible for an organization to manage all the known data formats and there

at least a dozen valid ‘comma separated value’ varieties. If there is no control over the

format of source data and it is left to the discretion of the provider then this adds additional

complexity to data collation.

Data is often stored in idiosyncratic formats or designed for human viewing rather than

computational processing. The messiness of data which is part of ‘Knowledge Discovery’

is addressed by the ‘Schema-First’ approach by removing data attributes that are not cap-

tured by the schema. This may in turn lead to misleading conclusions or adversely affect

the quality of the intelligence.

4.7 Summary

The ‘Schema-First’ Approach is the approach taken by many organizations to capture, col-

late and process intelligence data. This approach utilizes Extract Transform Load (ETL)

technology as the foundation of the capture, collection and collation phase of the Intelli-

gence Life-Cycle and plays a significant role in the preparation phase of the CRISP-DM

framework. The data cleansing approach can fundamentally change or distort data values

which may affect the resultant conclusions made within intelligence based products.

4.7. SUMMARY 77

The proposed ‘Schema-Last’ Approach will be shown to be a superior to the ‘Schema-

First’ Approach to dealing with data ambiguity and processing. The next chapter will

propose the novel approach to the ‘Schema-First’ Approach where the messiness of data is

addressed.

78 CHAPTER 4. ‘SCHEMA-FIRST’: THE CURRENT APPROACH

Chapter 5

The Proposed ‘Schema-Last’ Approach

The traditional (largely based on ETL technologies) approaches were no longer, effective

within the ACC and a new and novel approach had to be found. In addition, the analyst’s

demands for data and data availability grew and so did the available data sources. There

were a number of attempts made to address the analyst’s concern until settling on the

‘Schema-Last’ Approach (SLA).

This chapter will describe in detail the ‘Schema-Last’ Approach and this will include:

1. The Data Triage Process.

2. The artefacts contained within SLA Schema.

3. A formal description of these artefacts.

4. A formal notation to represent these artefacts.

5. The relationship between the SLA Schema and artefacts.

6. How RDF can be used to represent Structures and how the RDF List structures can

be used to store the data.

79

80 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

5.1 The Data Quality Challenge

The introduction of errors as part of the Collection and Collation phase of the Intelligence

Life-Cycle will only result in incorrect analytical results. The application of the schema

is important where ‘Schema-First’ Approach applies the schema at the beginning of the

Intelligence Life-Cycle and no change can be made without affecting future collections

and collations (see Figure 5.1). The ‘Schema-Last’ Approach allows the schema to be

applied on demand and there is absolutely no necessity to have a fixed schema (see Figure

5.2).

Requirements

PlanningCollection

Processing

Analysis Dissemination

Schema

Figure 5.1: ‘Schema-First’ Approach

Requirements

PlanningCollection

Processing

Analysis Dissemination

Schema

Figure 5.2: ‘Schema-Last’ Approach

5.1.1 Data Format and Data Cleansing

Data also carries a format or representation which adds value to the data. Data Cleansing

will often drop or remove the format and many data miners disregard the format of the

data to have any significance. Table 5.1 illustrates the variety of data formats and the

significance of the data’s format. The ‘Schema-First’ Approach required that assumptions

must be made up front to process data and in turn resolve any ambiguity. If the data did

not meet those assumptions then the data was either rejected or modified to meet those

expectations.

The ‘Schema-Last’ Approach deals with ambiguous data differently than ‘Schema-

First’ Approach and does not reject data or impute any missing values if not present within

5.2. THE ‘SCHEMA-LAST’ APPROACH SPECIFICATION 81

Data Cleansed Data Format Comment

20 July 2014 20-07-2014 DD Month-YYYY Standard Australian Format
07-20-2014 20-07-2014 MM-DD-YYYY US Format
2014-20-07 20-07-2014 YYYY-DD-MM Arabic Format (right to left)
July 2014 01-07-2014 Month YYYY Imputed Value - Day

Table 5.1: Date format representation

the data itself. The following chapter will show how applying index strategies will solve

many of these ambiguity problems.

5.2 The ‘Schema-Last’ Approach Specification

A new approach, is to apply the schema only when the data is retrieved. This approach

allows for a more dynamic treatment of the data. The relational model can mimic the

‘Schema-Last’ Approach but is not designed to hold dynamic schema definitions.

Generally this approach required each record to be allocated a unique key. The unique key

is independent to the actual data. There are two approaches with the allocation of the

primary key and these are:

1. Use a time-stamp to identify each record within the data source.

2. Use a Universal Unique Identifier or commonly known as an UUID. The UUID is

unique and based on the principle that no other future or past generated UUID can

ever be the same. There are currently three commonly used UUID generation algo-

rithms which are time, network, or random number generation based.

The following section will describe the formal process, artefacts, nomenclature and rules

that make-up the ‘Schema-Last’ Approach.

5.2.1 Formal Process Description

SLA provides a formal framework to describe the process and the language necessary to

describe a data source. The process provides an inherent feedback loop and is an iterative

82 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

process. It is always possible to ‘start over again’ if the SLA schema definition is proved

to be incorrect.

The SLA process consists of the following phases which are described in Figure 5.3:

1. Data source triage: The coercion of data into a form where it can be uploaded into

the data repository. No data is lost or changed during the triage process.

2. Specification:

(a) The labelling of all fields contained within a data source.

(b) The association of each field with a specific domain.

(c) The creation of models and associated field memberships.

(d) Schema storage and version management.

3. Application: Create indexes based on the schema defined in step 2.

4. Verification: Ensure the application of the schema and that erroneous index entries

are not created and that the models defined within the schema correspond with the

data contained within the data source.

5. Fuse: Identify entities which are common within the data source.

6. Resolve: The construction of a ‘single source of truth’ to represent an entity (gener-

ally a person or organization) within the entire data repository.

5.2.2 The Triage Process

Data Cleansing is the transformation of data from a non-canonical to a canonical state. ETL

involves the transformation of data into a state suitable for ingestion into a database. This

usually requires the standardization of data fields from the original source to a new target

format (see Figure 5.4 and Figure 5.5).

For example dates may be transformed from mm/dd/yyyy to dd/mm/yyyy or addresses

may be required to have the postcode field removed. Extraneous attributes within a field

5.2. THE ‘SCHEMA-LAST’ APPROACH SPECIFICATION 83

Initiate

Triage

Specification

Verify

Application

Verify

Fuse

Resolve

Validate

n

y

n

y

Figure 5.3: ‘Schema-Last’ Approach - processing

84 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

or the entire field are lost due to the cleansing process. For example a person’s salutation

(MR, MRS, DR, et cetera) if contained within a field may be required to be removed to

comply to the name field specification. Often the ETL process can lose data or perhaps

pervert the original data in some way and may in turn reduce overall quality of the data

(Rajaraman, 2014). As argued by N. Brierley, T. Tippetts and P. Cawley:

“Formal data cleansing can easily overwhelm any human or perhaps the com-

puting capacity of an organization (Brierley et al., 2014.).”

This problem was also identified by Vincent Burner in 2007:

“that the data volume may overwhelm the Extract Transform Load process and

that data cleansing may introduce unintentional errors (McBurney, 2007).”

Data Triage is different to ETL in that the raw value of the data is always maintained

throughout the transformation process. The data is loaded into the data stores verbatim
unless there are structural transformation issues with the original data source.

To summaries the differences between the Data Triage and ETL:

• Data Triage does not alter the original data value or format whilst ETL may alter a

field’s content.

• Data Triage will not eliminate any data field contained within the original data source

whilst the result of an ETL load process will eliminate fields that do not comply to a

fixed schema.

Input Cleanse Data

Extract Transform Load

Figure 5.4: Data cleansing

Input Transform Data

Triage

Figure 5.5: Data triage

5.3. REPRESENTATIONAL ARTEFACTS 85

Set Store

Semantic Store

Match Store

Figure 5.6: The structure hierarchy

5.3 Representational Artefacts

The ‘Schema-Last’ Approach contains two distinct artefacts. Structural artefacts define

physical structure of the data and how the data will be stored (see 5.6). Whilst Representa-
tional artefacts describe the characteristics of those artefacts. Essentially, Representational
artefacts are meta-data which define the structure of the SLA repository. A Conceptual
artefact is a concept that can be used to represent a notional relationship or object.

The actual physical storage is not mandated and could be any big data implementation

that supports both the representational and logical structures.

There are three distinct store types even though the store may reside within the same

storage repository. The three stores types are:

Set-Store The Set-Store is the initial container of any data storage which include snapshot,

feeds or a complete data store.

Semantic-Store The Semantic-Store builds on the set-store and identifies entities (an en-

tity are the attributes within a set pertaining to an identifiable person or organisation)

contained within the set-store. The Semantic-Store also describes relationships be-

tween sets contained within a store.

86 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

Match-Store The match store establishes link between entities contained within the entity

store. In addition to establishing the link, entities are also resolved if it can be es-

tablished that an entity is the same contained within two independent sets then this

relationship is saved within the match-store.

5.4 The Set-Store

The set-store is a first order store of data that can be expressed at a sparse array. The set-

store is where the data first arrives, is indexed and made available for general use. Where

no modification is required, the data is considered raw and data integrity is maintained.

The data within the set store is never modified. Data may be appended to the end of the

store via the bag mechanism or entire store and bags may be dropped from the repository.

It is important that data provenance is maintained if sets with the store are referred to by

either the semantic or match-store. If this is the case then this data must never be dropped

otherwise the data lineage is broken.

Whilst the underlying data cannot change, additional knowledge about the data may

change. This additional knowledge can be reflected in changes to the Schema.

5.4.1 Physical Artefacts within the Set Store

Physical artefacts are artefacts that are a physical item or data element and will consume

storage within a set store. There is no restriction on the number of repositories, stores, sets,

bags and cells.

Repository: The repository is a collection of stores. There is no restriction to the number

of stores contained within a repository. There may be one or more repositories.

Store: The Store is a container of bags. The set order is preserved so that the sets may be

retrieved in that order. A store is analogous to a relation table. A store may have only one

associated schema. This schema may change over time, however the content of the store

cannot change.

5.4. THE SET-STORE 87

Column

Row

Cell

Link

Figure 5.7: Set store ‘list’ structure

88 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

Set: The Set is a container for cells. The cell order is preserved so that the cells may

be retrieved in that order. A set is analogous to a row within a relational table. Unlike a

row within a relational table the set order within the store is important. Sets are uniquely

identified by a Set Identifier.

Bag: The store is a container for one or more bags. A bag represents the addition of a

logical group of sets that naturally belong to each other. Generally, sets are not individually

removed from a store. The premise behind the bag is to capture snap-shot data as a single

instance.

Cell: The cell is the atomic data item. A cell is identified by its position within a set. A

cell can either be identified by a label or by its position.

5.4.2 Representational artefacts within the Set Store

Representational Artefacts are artefacts that represent a physical item or data element

within a set store. All representational artefacts are optional, however there are inter-

dependencies between some of the artefacts for example a model cell must have an as-

sociated domain.

Label: A label is a title for a specific field usually assigned by the person or organization

that initially created the data source. This would be the column name if the data was

originally from a spreadsheet and as such does not have to be unique within a store.

Domain: A domain is an optional range of values - domain - to all the cells within a

nominated position within a set. The domain is the logical set of values for a specific cell

at that position.

Map: A map contains the relative location of each label contained within the store. Each

entry in a map must contain a label. The position of the cell within the map determines the

cell’s domain and relative model position.

5.4. THE SET-STORE 89

Model: A model is a logical group of fields (see Figure 5.8) . A model may hold

fields contained within another model. Models that do not hold fields from other models

are said to be distinct (Figure 5.9). Models containing all the fields held within another

model are said to be encapsulated (Figure 5.10). There is no restriction on the number of

encapsulated or distinct models contained within a SLA schema. Models may share fields

within the same schema definition (Figure 5.11).

The same model definition may reappear in another data source schema. It is also

possible that two or more data sources have identical SLA schema definitions. The model

definition is not fixed, at anytime new knowledge about the data source is known, this may

affect the model definitions contained within a schema.

5.4.3 Conceptual Artefacts

c1 c2 c3 c4 c5 c6 c7 c8

Model 1 Model 2

Figure 5.8: ‘Schema-Last’ models

There are artefacts that do not

have a physical representation

within the schema but become

more important when further pro-

cessing is required for entity ex-

traction and data matching. Con-

ceptual artefacts are used as in-

put to the Indexing Strategies and

used to define the schemas used by the indexing engines. Conceptual artefacts can change

over-time and are not set in stone at inception.

Domain Group: There are domains that naturally belong together and may be used by

itself but do not make sense when used in conjunction with other domains. An example of a

domain that falls into a domain group would be month-of-birth would require both a Day-
of-Birth and a Year-of-Birth to make a complete Birth-Date. In some cases especially

with message data that is associated with intelligence data that the data source may only

contain the Year-of-Birth without the Day and Month. All three domains then make up

the domain group Birth Date. As another example, a model may contain four domains the

90 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

Group Domain Domains Description

Date-of-Birth
Birth-Day

A person’s date
of birth

Birth-Month
Birth-Year

Address

Unit/Flat Number

An established
address

Street Number
Street Name
Suburb
City
State
Postcode
Country

Table 5.2: Group domains

street number, the street name, the postcode and the country, and if combined these four

domains form, the complete address (see Table 5.2).

If the data set contains Geo-spatial coordinates then this domain would logically be

associated with an address domain.

Domain Array: The domain array is where a model contains multiple occurrences of a

single domain. An example of this would a telephone number where it is not uncommon

for a person to have both a mobile and home telephone number. A domain group cannot

also be a domain array.

In the case where multiple domains are required to identify a group for example, an

address, can be achieved through the use of a model group.

Model Group: The model group is a logical collection of domains that may exist one or

more times within a model. There is no representation of a model group but it typically

applies to multi-domains for example an address. A model group is a logical collection

of cells that relate to a particular entity. If the model is of a person then the model would

contain the person’s name, date-of-birth and address. However, if the model represents

an organization then this would contain the organization’s name, address and Australian

Business Number (ABN). Models may only contain one model group of that group type and

5.4. THE SET-STORE 91

if the group is different, such as a person’s name and their address then this is permissible.

However, if the person has multiple address then a separate model must be created for each

address but contain the person’s name and date-of-birth if present.

Store Column: The Store Column is the set of cells at a specific position within all sets.

A column has assigned a mandatory label and optional domain. The column’s label and

domain applies to all cells at the column’s position. In addition, the column position is used

to identify the cells and any associated domain within a model (see Figure 5.13).

C(S) = {cn|c ∈ sc} (5.1)

store C1 C2 C3 C4 C5

s1 c1 c2 c3 c5
s2 c1 c2 c3 c4 c5
s3 c1 c2 c3 c5

Figure 5.13: Row/column representation

Store Identifier: All set stores must have

an unique identifier to identify and be able

to locate the store within the repository.

The Universal Unique Identifier or UUID

is an accepted approach to generate unique

identifiers and is used as the set identifier

within all reference implementations. As

long as the store identifier is unique there is

no restriction on the format or value of the store identifier. It is not uncommon for datasets

received by the agency not to contain a primary key. The store identifier can be used for

this purpose and if the data source does have an identifiable primary key then meta-data

can be used to indicate that an external primary key is available.

Store Folders: Folders are created to logically group stores together (see Figure 5.14).

The folder structure could include any number of stores or another store folder. There-

fore, folders provide a hierarchical conceptual representation of the stores and provide the

capability to group stores together.

92 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

A B

Figure 5.9: Distinct models

A B

Figure 5.10: Encapsulated models

A B

Figure 5.11: Overlapping models

A B

C

D

E

Figure 5.12: Complex model specifica-
tion

5.4. THE SET-STORE 93

5.4.4 Formal Definition

root

folder

folder

folder

store

store

store

Figure 5.14: Folder Structure

It is important to formally define the in-

teraction and structure of the artefacts that

makeup the SLA framework. Table 5.4

defines the symbolic representation to de-

scribe the ‘Schema-Last’ Approach. The

Store is a tabular representation of parti-

tioned data which is described by a single

schema definition. The schema definition

can be modified at any time. Even though a

store has many similarities with a relational

table there are also significant differences.

The Schema is not fixed and can be modi-

fied at any time without affecting the composition of the data. The data within a store is

partitioned into bags. Bags are a sparse matrix of sets and cells. Sets maintain a position

within a bag (starting from 0) and this is referred to as a positional set and identified by

snwhere n is the position within the bag. The position reflects the relative row position

within the data source if the data source is a spread-sheet or comma separated value. Sets

contain cells which also contain a position and are identified by cnwhere n is the position

within the set. Sets and cells together make up the sparse two dimensional array. The value

within a bag can be expressed where:

b[sn,cn] (5.2)

Therefore value fred at set position 4 (s4) and cell position 3(c3) would be expressed

as:

b[s4,c3] = f red (5.3)

Or as an array specification:

b[4,3] = f red (5.4)

94 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

Symbol Name/Function Description
R Repository The repository of stores.
b Bag A bag is a container of sets.
Sb Store Bags All the Bags contained within a store .
c Cell A cell is a container for a single value.
cn Positional Cell A cell position within a set.
Cn Positional

Column
A column at position n within a store.

S Store A store with all its contents.
Sid Store Identifier Uniquely identifies a store.
s or {} Set A set is a container of cells.
{∅} Empty set A set with no cells.
sn Positional Set A set at position n within a bag.
Ss Store sets All the sets contained within a store .
sc Set cells All the cells contained within a set.
bn Positional Bag A set at position n within a bag.
l Label A label is a short description/moniker

associated with a cell.
ln Positional Label A label at position n within a set.
D All Domains All defined domains.
d Domain A domain describes the type of data that may

be contained within a cell.
Sd Store Domains All the Domains contained within a store.
dn Positional Set

Domain
A domain at position n within a set.

Sl Store Map All the labels contained within a store
m Model A model is a sequenced set of domains.
mn Positional Model A model at position n.
Sm All Models All the Models contained within a store.
t Tag Tag represents a Name/Value pair.
c Undefined cell Cell that has no domain and not contained in a

model.
cn Undefined store

cell
All cells that are within a store but not
contained in a model or have no associated
domain.

c† Defined cells A cell that has a domain.
c†

n Defined store cell All cells within a store that have an associated
domain (not those not contained in a model).

c‡ Assigned cell A cell that has a domain and contained within
one or more models.

c‡
n Assigned store

cell
A cell that has a domain and contained within
one or more models.

Table 5.4: Symbols and nomenclature

5.4. THE SET-STORE 95

Because a bag is a sparse array it is possible that there is no value contained within a

bag at a particular position. This represented by the∅symbol or nothing. Bags also have a

relative position within a Store therefore a specific value within a store can be represented

as:

S[b0,s4,c3] (5.5)

Therefore value fred at bag position 0 (b0) set position 4 (s4) and cell position 3(c3)

would be expressed as:

S[b0,s4,c3] = f red (5.6)

Or as an array specification:

S[0,4,3] = f red (5.7)

5.4.4.1 Set Definition

A set can be expressed as:

s = {c|c ∈ sc,s ∈ S} (5.8)

Where: s is the set of 10 cells and cnwhere n is the relative position of each cell within

the set.

5.4.4.2 Store Equivalence

The store’s domains determine whether a store share domains.

S
′
≡ S

′′
⇒{S

′
d|d ∈ S

′′
d,d ∈ D} (5.9)

Rule -S1 : Sets from two different sources are equivalent if the stores are equivalent:

s
′
≡ s

′′
⇒ S

′
s ≡ S

′′
s (5.10)

96 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

5.4.4.3 Store Map

The store map is defined as:

Sl = {l1...ln} (5.11)

Rule-M1 : The labels (store map) within store S
′
l and S

′′
l are not equivalent:

S
′
l 6≡ S

′′
l (5.12)

5.4.4.4 Label Definition

Each Field - cn can have an associated label - ln :

cn→ ln (5.13)

Rule-L1 : A label at any position from different sets are not equivalent:

S
′
→ ln 6≡ S

′′
→ ln (5.14)

5.4.4.5 Model Definition

Which contain two models m1 and m2

S
′
= {m1,m2} (5.15)

m1 contains:

m1 = {c1,c2,c3,c4,c5} (5.16)

m2contains:

m2 = {c1,c2,c6,c7,c8} (5.17)

The union of m1and m2can be defined as:

5.4. THE SET-STORE 97

m1∪m2 = {c1,c2,c3,c4,c5,c6,c7,c8} (5.18)

The intersection of m1and m2can be defined as:

m1∩m2 = {c1,c2} (5.19)

The unassigned cells in S
′
are as follows:

Sc = {c9,c10} (5.20)

5.4.4.6 Domain Definition

A domain is related to field in that a field can only ever have assigned a single domain:

dn→ cn (5.21)

Therefore for S:

Sd = {cd|c ∈ Sc,d ∈ D} (5.22)

A set may can contain one or more domains:

{Sd|d ∈ D} (5.23)

Rule-D2: The same domain contained within two different sets are equivalent:

S
′
→ dn ≡ S

′′
→ dn (5.24)

5.4.4.7 Domain-Model Definition

The same applies if two models have the same domains then the equivalent:

m1 = {d1,d2,d3} (5.25)

98 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

m2 = {d1,d2,d3} (5.26)

Rule-M1: The same models contained within two different sets are equivalent:

m1 ≡ m2 (5.27)

5.4.4.8 Cell-Model Membership

For a cell to be a member of a model this must be true where P is the cell-model member-

ship function:

∀c ∈ Sc,∃c ∈ Sc† : P(c) (5.28)

5.4.4.9 Domain-Model Fusion

Two models in different stores S
′
mand S

′′
mare said to be equivalent if and only if:

{d : d ∈ S
′
m}∩{d : d ∈ S

′′
m} 6= {∅} (5.29)

5.4.4.10 Distinct Models

Two models in stores S
′
mand S

′′
m and P is the cell-model membership property function are

said to be distinct if:

∀c ∈ S
′
c,∃c /∈ S

′′
c : P(c) (5.30)

5.4.4.11 Overlapping Models

Two models property in stores S
′
mand S

′′
mand P is the cell-model membership function are

said to be overlapping if:

∀c ∈ S
′
c,∃d ∈ S

′′
c : P(c) (5.31)

5.4. THE SET-STORE 99

5.4.4.12 Store Fusion

Rule-F1: Store S
′
and S

′′
and P is the domain membership function can only be fused if the

stores have at least one domain in common:

∃d ∈ S
′
d,∃d ∈ S

′′
d : P(d) (5.32)

5.4.5 Label Allocation

The label is assigned by the data source provider to identify the cell at a specified position.

Usually this is a short description such as as supplier name, registered-owner, date of inci-

dent and so on. As stated in Rule-L1, labels from different data sources are not equivalent

even if the labels share the same value. Labels should never be modified by the receiving

uploader no matter how cryptic the label’s value. It is important that the data provider

assign meaningful labels to describe the positional cells contained within the data. If the

data provider chooses not to provide the label then the domain for the positional cell may

suffice.

5.4.6 Domain Classification

The domain identifies a cell content. Unlike ‘Schema-First’ the domains are not fixed but

suit the ontological requirements. For example, a domain may be a first-name, date-of-

birth, address-line and post-code. The classification of domains excludes primitive data

types which are: string, integer, byte, char, et cetera (see Equation 5.33). Therefore a

domain represents the set of values for a particular cell. Furthermore, the domain is used to

relate fields from different data sources. Correct usage of domain classifications provides

a capability to fuse data sources together. Domains are compatible across stores and it is

important that domains are chosen carefully because once assigned domain usage cannot

be changed.

Unlike the label, domains are allocated by the provider of the data source it is up to the

analyst or person to determine the domain of a positional cell. This may be achieved by

100 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

Identity

Name Date-of-Birth

Given-Name Last-Name

First-Name Middle-Initial

Figure 5.15: Typical ontology support

Name

Persian Anglo-Saxon Chinese

Hokkian Mandarin Catonese

Figure 5.16: Cultural ontology

random data samples of the positional cell’s value and making a determination. The cell’s

label may also provide a clue of the positional cell’s domain.

The positional cell’s domain is not fixed, and can be changed later if it is proven to be

incorrectas as long as domain d the domain is member of all known domains D :

d ∈ D : P(d) (5.33)

5.4.7 Domain Ontological Structure

Not many data modelling products have Ontological support, however W3C has speci-

fied Ontology Web Language (OWL) which defines a comprehensive ontological language

(W3C, 2012). OWL allows the definition of hierarchical ontological structures based on

the RDF specification. SLA can also assist in the ontological description of the data in re-

gards to domain classification as shown in Figure 5.15 and OWL could be used to describe

the ontological structure of the domain. The ontological structure should be kept simple

unless there is a need to refine a domain if somehow it does not make sense in the context

it will be used. In turn, the domains will drive the indexing strategies.

5.4. THE SET-STORE 101

5.4.8 Cultural Ontology Classification

Apart from normal ontological structures, ontological definitions may be sensitive to cul-

tural variances. The ACC has identified various groups, some based on a person’s race, club

affiliation, religious institution or any other group or organization (see Figure 5.16). Any

information pertaining is useful in determination of the index strategy to help determine a

person’s identity and cultural characteristics (Price, 2007).

5.4.9 The Logical Schema

To choose a language for the Schema to represent the artefacts it is important that it utilizes

standard descriptive languages. XML is one such option in that XML has been used to

express many standards including National Information Exchange Model (NIEM) and the

Health Standard for information exchange HL7v3 and there are many other examples.

However, the Resource Definition Framework (RDF) provides a platform to represent any

data structure including SLA - Schema Definitions.

RDF is a specification that represents knowledge and with the addition of graphs or

context allows data to be classified. In addition, the blank node allows for the seamless

grouping of schema artefacts which include the models contained within the map and the

map itself. The RDF ‘Sequence’ (see Figure 3.3.1) can represent a store map where the

RDF item’s sequence number is the relative position of the label. The same applies for the

model which can also take advantage of the RDF sequence structure so that the domain

position can also be represented by the RDF sequence number (see Figure 5.17).

In addition, the schema RDF representation can be easily shared or even managed by

source management systems such as CVS, Subversion, GIT, et cetera.

The schema definition is formally represented in RDF N3 form (W3C Working W3C,

2014). RDF blank nodes are used to group the fields that are contained within a model.

Figure 5.17 is a simple schema definition that contains three fields and two models.

102 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

@pref ix r d f : < h t t p : / / www. w3 . org / . . . # >
@pref ix r d f s : < h t t p : / / www. w3 . org / . . . # >
@pref ix schema : < h t t p : / / www. s l a . o rg . au / . . . # >

< f i l e : / schema . t t l > schema # : schema
[
<schema # : / / model >

[
r d f : # _1 _ : b1 ;
r d f : # _2 _ : b2 ;
r d f : _#3 _ : b0

] ;
<schema # : / / model >

[r d f # : _0
_ : b0 , _ : b2 , _ : b1 ;

r d f # : _1
_ : b0 , _ : b2

]
] .

_ : b0 r d f s # : domain " document−i d " ;
r d f s # : l a b e l " document−name " .

_ : b1 r d f s # : domain " f i r s t −name " ;
r d f s # : l a b e l " g iven−name " .

_ : b2 r d f s # : domain " l a s t −name " ;
r d f s # : l a b e l " surname " .

Schema

Model-1 Model-2

given-Name surname document-name

Figure 5.17: Schema definition and visual representation

5.4.10 Meta-Data

Good meta-data conforms to community standards in a way that is appropriate to the col-

lection (store) and current and potential future uses of the collection. It is essential to

conform to, or at the very least map to, known local and international standards for meta-

data, rather than using proprietary or homegrown schemes. However, simply because a

particular meta-data scheme is considered a standard does not necessarily mean that it is

the appropriate standard for any given collection. It is a well-established standard for de-

scribing intact archival (see Figure5.18) collections with a common provenance, but it is

not the best scheme for describing heterogeneous object compositions that have different

data sources.

Good meta-data should be coherent, meaningful, and useful in both organizational and

global contexts beyond those in which it was created. This means that it must include

all pertinent information about the object, since assumptions about the context in which

it is accessed locally may no longer be valid in the wider networked environment. For

example, a collection of asset ownership may not indicate the year or why or how the asset

5.4. THE SET-STORE 103

Meta-Data nomenclature

toxonimic

theme

specification

source

quality

collection

usage

Figure 5.18: Meta-Data descriptions

Meta-Data system

auditing

security

user-defined

template

descriptive

dimension

spatial

temporal

quality

identity

reliability

Figure 5.19: Meta-Data domains

was first purchased. However, in the wider network context, form and quality information

becomes important. Digital collections with a topical focus are notorious for creating non-

interoperable meta-data when they assume that users know the main topic of the collection.

When this meta-data is shared in larger aggregations, descriptions that made sense in the

context of the original collection can be mystifying. This has been dubbed the ‘on a horse’

problem, from the description of a photograph in Harvard’s Teddy Roosevelt collection,

where the title assigned to the photograph did not indicate who was sitting on the horse,

since all the materials in the collection related to Roosevelt.

The creation of accessible, meaningful shared collections implies responsibilities on

the part of both the data providers (organizations that create meta-data records and con-

tribute them to federated collections) and service providers (aggregates that provide ac-

cess to federated collections or union catalogues). Data providers should strive to create

consistent, standards-based meta-data, to use appropriate controlled vocabularies and the-

sauri, and to follow appropriate data content. Service providers must implement meta-data

normalization, remediation, and enhancement, and should, as their name implies, provide

additional value-added services such as vocabulary-assisted searching, subject clustering,

104 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

terminology mapping, and other enhancements. Adherence to appropriate standards and

collaboration between data providers and service providers are crucial elements of effec-

tive aggregated digital collections.

5.4.11 ISO Standard 11179-1

ISO Standard 11179-1 describes meta-data as a kind of data that describes one or more ob-

jects. Objects can be of any type, such as books (e.g., resource meta-data), databases and

data itself (e.g., data semantics meta-data), documents (e.g., records management meta-

data), equipment (e.g., device meta-data), and data governance itself (e.g., registration

meta-data). Good meta-data practices (consistent observation, consistent meaning, and

useful cataloging taxonomies) can provide valuable benefits to the enterprise, such as:

• Better search and discovery of desired objects (e.g., documents, data, services, etc.)

and their related objects (e.g., administrative services).

• Automated and semi-automated processing of on-demand data assets, e.g., using data

assets in meaningful ways without prior knowledge.

• Better re-use of one’s objects (e.g., data assets) via proper cataloging (applying and

tagging meta-data) and discovery by other users.

Any meta-data encapsulated within the set store must comply to ISO Standard 11179-1.

5.4.12 Meta-Data and Provenance

The life-cycle of meta-data, like data, is created, processed, stored, and communicated.

The life-cycle of meta-data has common features, not all of which are shared by general

data. There are key stages in the meta-data life-cycle and these stages do not necessarily

imply a particular business, information, or technology process. Meta-data is created when

a descriptive relationship is revealed between a datum (now to become meta-data) and an

object (the datum describes the object). Usually creation meta-data is never changed once

created and typically, descriptive relationships are not created accidentally but are created

deliberately through a business, information, or technology processes. In other words, it

5.4. THE SET-STORE 105

is rare that meta-data is created free-form without any guidance or constraints of what

can/should be recorded. Typically, meta-data can take the form of:

• keywords,

• names or titles,

• owners or authors (their system user identifier),

• descriptions,

• contextual information, for example into a record that is embedded within, adjacent

to, or associated with a target object.

5.4.13 Container Level Meta-Data

In some cases it may be important to restrict the tag name to the related or group stores. For

example, if certain stores belong to a particular investigation the tag name and value can be

used to define this relationship (see Figure 5.19). In addition to restricting tag names, tags

can be broadly broken into the following classifications:

User: These are tags allocated by the person who initially loaded the data to annotate the

data source.

Template: A template is used to format the set data contained within a store for reporting

purposes. An example would be XSLT template or an R program that processes the

set data.

Descriptive: Tags that describe the users of this data or business processes. Descriptive

tags are short textual narratives.

Identity: To be able to locate a store within a repository if there are hundreds or even

thousands contained within it can be difficult. This group of tags allows the quick

location of store within a repository.

Quality: A sub-group of descriptive tags is data quality which can be used as input to the

data-matching algorithms.

106 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

Symbol Name/Function Description

T Tags The set of tags name.
t Tag An assigned or unassigned tag.
tn Store Tag A tag assigned to a store.
St Store Tags All the tags assigned to a store.
Bt Bag Tag A tag assigned to a bag.

Table 5.6: Tags, symbols and nomenclature

Security: These tags are used to restrict access to the store data.

Dimension: These tags are generally used to define where data came from and where

the data reflects a geo-spatial location which could be in the form of a geo-spatial

polygon.

System: These are tags automatically created by the system for auditing purposes. For

example the date and time the data was uploaded.

5.4.14 Meta-Data Tags Formal Definition

Descriptive meta-data can form part of the schema definition. However it is important to

formally define the relationship between tags to stores and bags. Tags can only be assigned

to container artefacts which are stores and bags.

Rule-T1: The same tag contained within two different stores (S
′
and S

′′
) are equivalent:

S
′
→ t

′
≡ S

′′
→ t

′
(5.34)

This rule applies to all stores with that tag. In addition, the tag name and value may be

copied from one store to another.

Rule-T2: The same tag contained within two different bags (B
′
and B

′′
) are equivalent:

B
′
→ t

′
≡ B

′′
→ t

′
(5.35)

5.4. THE SET-STORE 107

5.4.15 Storage Considerations

There are several big data implementations each of which can support the ‘Schema-Last’

Approach to data modelling. The data sources obtained by the ACC can be subject to

interpretation and it is important that the interpretation is represented by the schema. In

addition, it is important that the schema can be modified without affecting the underlying

data. The schema must be able to capture ambiguity within the data. It is not always pos-

sible to classify a data item as person or organization name. A contact address may be a

phone number or email address. This classification problem can be overcome in a num-

ber of ways, either through a flexible schema approach or through the utilization Extract

Transform Load (ETL) technologies.

The SLA demands suitable storage platform to store both the store’s schema and data.

Furthermore, the data (the store’s sets could number in the millions) must be also be able

to be retrieved in a specified order or the order on ingestion. Therefore a sequence number

must be incorporated into each set to allow for the retrieval of a set in a pre-determined

order.

5.4.16 Provenance and Storage

The ACC requires that the store’s data be returned in the original form as it was acquired.

This is to be able to identify the row within a spread sheet or reproduce the spread sheet

assuming the data was collected that way. Therefore the set order must maintain:

R - is the retrieval function

S - is the Store

R(S) = {s1...sn} (5.36)

The meta-tags would also contain information to retain the provenance of the data and

this would include:

• The date and time the data was collected.

• The name or an identifier of the source.

108 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

artefact RDF Structure RDF Example

Store base://store/<id> sla://store/189090748374
Bag base://bag/<id> sla://bag/189090748374
Set base://set/_<pos> sla://set/_000100
Cell base://cell/_<pos> sla://cell/_<pos>

Table 5.7: RDF representation of SLA artefacts

• How the data was obtained. For example was the ACC required to invoke coercive

powers to obtain the data?

• Any caveats associated with the data. An example of a caveat would be restrictions

on how the data can be used and who has access to the data.

• The owner or owners of the data.

5.5 RDF Representation

RDF is a flexible standard notation and can represent any data structure. As such, it is ideal

to represent the set store artefacts. RDF resource is expressed as a Universal Resource

Identifier (URI). The URI consists of three components, the first being the base or protocol.

This is user defined, however http and rdf have special significance. The second part which

is followed by the ’://’ is the artefact type. The final part of the resource is an identifier or a

position. RDF uses the underscore character ’_’ to identify a numeric value otherwise the

URI is invalid since numbers cannot follow a back slash.

5.5.1 RDF List Structure

The RDF triple store allows the storage and retrieval of any data structure and well suited to

store the ‘Schema-Last’ artefacts see Figure (5.3). Therefore, the triple store can store both

the data and schema structure. Ideally, a triple store graph would only contain a specific

store’s data and schema structure. The RDF list structure would contain the store’s sets

where a set would be an item within the list. In addition, the RDF list itself would retain

the set order.

5.5. RDF REPRESENTATION 109

@pref ix ex : < h t t p : / / example . o rg / > .
@pref ix r d f : < h t t p : / / www. w3 . org / . . . # >
ex : l i s t 1 r d f : f i r s t [

r d f : _1 " Basement Jaxx " .
r d f : _2 " 2 0 0 4 " .
r d f : _3 " Good Luck " .

] .
ex : l i s t 1 r d f : n e x t _ : a01 .
_ : a01 r d f : f i r s t [

r d f : _1 " Groove Armada " .
r d f : _2 " 1 9 9 6 " .
r d f : _3 " S u p e r s t y l i n " .

] .
_ : a01 r d f : n e x t _ : a02 .
_ : a02 r d f : f i r s t [

r d f : _1 " F a t Boy Slim " .
r d f : _2 " 2 0 0 2 " .
r d f : _3 " Weapon of Choice " .

] .
_ : a02 r d f : n e x t _ : a03 .
_ : a03 r d f : f i r s t [

ex : a r t i s t " Da f t Punk " .
ex : y e a r " 2 0 1 3 " .
ex : song " Get Lucky " .

] .
_ : a03 r d f : n e x t _ : a04 .
_ : a04 r d f : f i r s t [

ex : a r t i s t " P h a r r e l l W i l l i a m s " .
ex : y e a r " 2 0 1 3 " .
ex : song " Happy " .

] .
_ : a04 r d f : n e x t r d f : n i l .

Figure 5.20: RDF list represented in N3
form

Figure 5.21: A visual representation of
Figure 5.20

110 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

Syntax Form Matches

uri URI or a prefixed name. A path of length one.
^elt Inverse path (object to subject).
(elt) A group path elt, brackets control precedence.
elt1 / elt2 A sequence path of elt1, followed by elt2
elt1 ^ elt2 Shorthand for elt1 / ^elt2, that is elt1 followed by the

inverse of elt2.
elt1 | elt2 A alternative path of elt1, or elt2 (all possibilities are tried).
elt* A path of zero or more occurrences of elt.
elt+ A path of one or more occurrences of elt.
elt? A path of zero or one elt.
elt{n,m} A path between n and m occurrences of elt.
elt{n} Exactly n occurrences of elt. A fixed length path.
elt{n,} n or more occurrences of elt.
elt{,n} Between 0 and n occurrences of elt.

Table 5.8: Property path expressions

5.5.1.1 SPARQL 1.1 Property Path Expression

SPARQL 1.1 introduced the property path expression which simplified the navigation of

the RDF list structure. The property path expression can be used to search any directed

graph and is particularly useful to extract items from the RDF list structure. The rationale

for the introduction of the property path expression as stated by the W3C SPARQL working

group is as follows:

“Property paths allow for more concise expression of some SPARQL basic

graph patterns and also add the ability to match arbitrary length paths (W3C,

2010).”

Table 5.8 summarizes the extension and how the Property Path extension can be used to

navigate an RDF Graph Structure. It is important to note that property path expression can

travel forward or backward along a path within a graph.

The property path allows for the traversal of the RDF linked list structure and therefore

able to retrieve the sets in a specified order. If the data was ingested via a spread-sheet then

this spread-sheet could be reproduced. In addition to the set store data meta-data can also

be stored alongside the data in RDF form.

5.6. ADDITIONAL PROCESSING REQUIREMENTS 111

5.6 Additional Processing Requirements

The set store can be used to store a variety of data types which include snap-shot, feed,

Geo-spatial and so forth. Certain artefacts within the set store were created for a particular

storage type. In addition, the set store should also accommodate data destruction or partial

data destruction of a set or sets.

5.6.1 Feed Management

Not all data is collected at the same time and may in fact come in parts or as a feed. To

accommodate this requirement the bag artefact allows a subset or entire feed to be appended

to store and can be treated as an independent collection. Bags will also adopt the model,

domains, meta-data contained with in a store. However, bags may contain additional meta-

data to describe characteristics about the bag.

5.6.2 Data Disposal

The bag represents a single instance of a captured data. There are times where all instances

of the data must be removed as if the data never existed. The bag provides the capability to

remove all the sets from one captured data instance.

5.7 The Semantic Store

The set store contains the map, domains and the raw data. The maps and models give

the data context before any further processing begins, but do not contain the relationships

between entities within the same set or entities contained within the same store. The set

store is in effect the first port of call to collect and analyze all intelligence data. The se-
mantic store identifies relationships between entities within the same set store or between

sets contained within the same set store. In addition, a probability or certainty must be

attached to each relationship since intelligence or data captured though covert means is not

always certain. The models contained within set store identify an entity within the set or

112 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

other entities contained within the set store and the relationship of both is contained within

the set. There may be other attributes within the set to identify the type of relationship.

{s
′
→ s

′′
|s
′
∈ Ss,s

′′
∈ S} (5.37)

Sets that share a common identifier can be considered to share some relationship. The

semantic model is applied to represent relationships between sets within a store. The se-

mantic store defines set relationships within the same store. It is assumed that this rela-

tionship is true and confirmed. This relationship is used as input to further analysis and

depending on the nature of the store allows for a semantic representation of relationships

of sets or entities within the store.

Semantic relationships may be stored with or independently to the store. However,

the set identifiers are used to identify the relationships between sets and their respective

entities.

5.7.1 The RDF Schema Specification

RDF schema is a semantic extension of RDF. It provides mechanisms for describing groups

of related resources and the relationships between these resources. RDF schema can be

expressed in RDF Turtle, N3 or JSON formats. These resources are used to determine

characteristics of other resources, such as the domains and ranges of properties.

The RDF schema class and property system is similar in nature to that of object-oriented

programming languages such as Java and C#. RDF schema share many of the attributes

associated with the schema defined within the ‘Schema-Last’ Approach. As with the RDF

Schema there are also domains, range values and labels. The specification does not pre-

scribe what constitutes a legitimate domain. The specification does however define a sim-

ple ontology specification that describe properties associated with a domain. In addition,

domains can be a member of a greater domain group.

A significant benefit of the RDF property-centric approach is that it allows anyone to

extend the description of existing resources, one of the architectural principles of the Web.

5.7. THE SEMANTIC STORE 113

Figure 5.22: Owl ontology specification

5.7.2 The OWL Ontology Specification

Semantic definitions go beyond the set store schema with the models, domains, and the

groups (see Figure 5.7). The semantic store applies independent ontological structures to

the data contained within the set store. The ontological structures may contain relationships

to other cells within other sets contained within set store. An example would the OWL

ontology specification (see Figure 5.22).

This OWL specification is generally more accepted as a standard, as these testimonials

confirm (W3C, 2004):

“Boeing is a member of the W3C and is an early adopter of RDF, OWL and

related Semantic Web technologies. Boeing has a number of projects exploring

semantics-based applications in various areas including information and appli-

cation integration and interoperability, publish/subscribe, knowledge manage-

ment and network centric operations. These technologies are expected to have

114 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

a strong impact on future Boeing programs. Ontological structures have be-

come fairly widespread in their use and automated reasoning tools are becom-

ing mature. The time is ripe for standards in this area, and for widespread tool

support from vendors.” James L. Phillips, Director, Mathematics and Comput-

ing Technology, Boeing Phantom Works (W3C, 2004).”

“As the leading provider of content creation tools to help people communicate

better, adding intelligence to media via meta-data was integral to our strategy.

We developed Adobe XMP (Extensible Metadata Platform) based on RDF,

because it provided a flexible and interoperable framework for fostering the

capture, preservation, and interchange of meta-data across digital media and

work-flows. The Adobe Creative Suite provides a design platform that enables

creative professional to create information rich assets powered by XMP that

can be more effectively re-purposed and consumed across multiple media and

diverse domains.” David Burkett, Director of Product Management, Adobe

Systems (W3C, 2004).”

“The University of Bristol is delighted to see the publication of the W3C

RDF and OWL Recommendations. The University is a strong supporter of

open standards and a long-term participant in the RDF work and considers

the Semantic Web as important in developing advanced learning and research

technologies for education. Successful RDF-based projects at the University

include representing meta-data schemas, describing thesauri, events and cal-

endaring, syndicating news, web site annotation and trust and smarter web

searching for digital libraries. The University intends to continue developing

projects, software and services based on this work.” Alison Allden, Director,

Institute for Learning and Research Technology (ILRT), University of Bristol

(W3C, 2004).”

The OWL ontology language provides a comprehensive specification to represent the struc-

ture of set store data in an ontological structure. The structure is independent of data and

as new knowledge becomes available this may result in a change to the ontological defini-

tion. OWL has become de facto standard to represent ontological structures set stores and

5.8. THE MATCH STORE 115

provides the nomenclature to represent semantic relationships between entities within a set

or within the store.

5.7.3 The Palantir Ontology Specification

The Palantir Ontology specification is a comprehensive ontology specification that has been

designed to allow for the ingestion of ontological structures into the Palantir product. The

Palantir Ontology shares many similarities with the OWL specification. Currently, the

Palantir ontology is a proprietary implementation and based on their own XML specifica-

tion. Their XML specification is available for download from their web-site.

5.7.4 The Role of the Semantic Store

The semantic store provides a structured view to each set within the set store. Whatever

ontological specification is decided on, the semantic store allows for the interchange of

entities contained within the Set Store with other applications. The resultant entity does not

require to reside with or include the set store data but the resultant structure must maintain

the lineage back to the raw data by referencing the set identifier. Therefore the role of the

semantic store is as follows:

• Provide a mechanism to extract entities from the set store.

• Allow for the interchange of entities between intelligence products.‘

5.8 The Match Store

The set store is the first port of call to collect and analyze any intelligence data. The se-
mantic store identifies relationships between entities within the same set store or between

sets contained within the same set store. In addition, relationships may have an assigned

probability or the reliability of assigned relationship. The models contained within the set

store may identify an entity or entities within the set. There may be other attributes within

the set to identify the type of relationship.

116 CHAPTER 5. THE PROPOSED ‘SCHEMA-LAST’ APPROACH

Set Semantic Match

Schema Ontology Algorithms

Figure 5.23: The relationships between store classifications

Sets that share a common identifier can be considered to share some relationship. The

semantic model is applied to represent relationships between sets within a store. The match

store captures the results from the data matching (see Chapter 7) and stores these potential

matches as links within the match store. These results are maintained as links similar to

that which the semantic store represents in relationships described in the previous section.

5.9 Summary

This chapter defined the ‘Schema-Last’ Approach framework, the artefacts that make up the

framework and the relationship between the data and the schema definition. This approach

is specially targeted to assist in the collation and process of data gathered as part of the

Intelligence Life-Cycle. The three stores provide the basis to analyze and process the data

received by the analyst. Figure 5.23 shows the relationship between three store types. The

following chapters will describe how these stores are used in data exploration, matching

and fusion. The set store is the container of all raw data and provides the foundation for

further analytical processing and how this can best be exploited by the application of set

store models to the indexing strategies. Furthermore, the Schema-Last’s artefacts can be

applied to both data matching and fusion strategies.

Chapter 6

The ‘Schema-Last’ Approach and Data
Exploration

The ‘Schema-Last’ schema provides a framework to build the index structures necessary

to locate and exploit data. No longer does the index stand alongside the data or is bound

by the storage technology of the data storage systems. Data exploration is an informative

search used by data consumers to form true analysis from the information gathered. Often,

data is gathered in a non-rigid or uncontrolled manner in large bulks. For true analysis,

this unorganized bulk of data needs to be narrowed down. This is where data exploration

is used to analyze the data and information from the data to form further analysis.

Data often converges in a central warehouse called a data warehouse. This data can

come from various sources using various formats. Relevant data is needed for tasks such as

statistical reporting, trend spotting and pattern spotting. Data exploration is the process of

gathering such relevant data.The ‘Schema-Last’ Approach provides the framework to build

targeted index structures to better explore and exploit data.

This chapter will examine how ‘Schema-Last’ models can provide the structures and

artefacts necessary to define the index algorithms and field definitions. In addition, this

chapter will show how the Apache Solr index can incorporate the ‘Schema-Last’ artefacts.

117

118 CHAPTER 6. THE ‘SCHEMA-LAST’ APPROACH AND DATA EXPLORATION

6.1 ‘Big Data’ Indexing

For ‘Big Data’ to have any value to an organization it must be able to be exploited. The best

way to achieve this goal is to build indexes to allow end-users and automated processes to

query the data and have the result returned to them.

The result can also be sorted by relevance, alphabetical, data source or any other criteria.

‘Big Data’ can be classified structured, semi-structured or unstructured data. Structured

data is the easiest to index in that the format is clearly defined and there is no ambiguity

in the field definitions, semi-structured is where there could be some ambiguity in both

the structure and format of the data. Examples of this type of data include XML, JSON

documents and sometimes CSV (comma separated value) files and spreadsheets may also

fall into this category. Unstructured data includes text, images, video or any data that can

be defined by schema.

For textual documents much has been written (Moens, 2002) and it will be shown how

advances in Textual Indexing can discover knowledge that had not been previously known.

A number of strategies can be employed to enable a greater opportunity to discover the

unknown entities. For example: Figure 6.1 shows that multiple index strategies enhance

the search capabilities and the potential to discover the unknowns. The index includes and

is not restricted to phonetic, n-gram or absolute equality match.

6.2 Elastic Search

An Elastic Search is a form of search that utilises fuzzy index strategies for example pho-

netic, n-gram or any strategy that yields inexact search results. The largest single unit of

data in an elastic search is an index. Indexes are logical and physical partitions of docu-

ments within elastic search. Documents and document types are unique per-index. Indexes

have no knowledge of data contained in other indexes. From an operational standpoint,

many performance and durability related options are set only at the per-index level. From a

query perspective, while elastic search supports cross-index searches, in practice it usually

makes more organizational sense to design for searches against individual indexes.

6.3. INDEX NORMALIZATION 119

Elastic search indexes are most similar to the ‘database’ abstraction in the relational

world. An elastic search index is a fully partitioned universe within a single running server

instance. Documents and type mappings are scoped per index, making it safe to re-use

names and identifiers across indexes. Indexes also have their own settings for cluster repli-

cation, sharding, custom text analysis, and many other concerns.

n-gram index

Match

Fusion

Models

Phoneme

Index

Figure 6.1: Index strategies and the ‘Schema-

Last’ Approach

An implementation that utilises Elastic

Search is Apache Lucene which is a popu-

lar document indexing implementation see

(Apache Lucene, 2015). Indexes in elas-

tic search are not one to one mappings to

indexes, they are in fact sharded across a

configurable number of indexes, five by de-

fault, with one replica per shard. A sin-

gle machine may have a greater or lesser

number of shards for a given index than

other machines in the cluster. Elastic search

tries to keep the total data across all in-

dexes about equal on all machines, even if

that means that certain indexes may be dis-

proportionately represented on a given ma-

chine. Each shard has a configurable num-

ber of full replicas, which are always stored

on unique instances. If the cluster is not big

enough to support the specified number of replicas the cluster’s health will be reported as

a degraded ‘yellow’ state and being a clustered database, many data guarantees hinge on

multiple nodes being available.

6.3 Index normalization

‘Big Data’ repositories must be in first normal form in that:

• each record must a have a unique primary key.

120 CHAPTER 6. THE ‘SCHEMA-LAST’ APPROACH AND DATA EXPLORATION

• all occurrences of a record type must contain the fields in the same position for index

purposes.

It is not true with big data repositories only that all data must have the same number of fields

but all records must have a primary key. The principle is to capture as much information in

a single record as possible and it is this record that is indexed. The record may be identified

by multiple index entries. Unlike data stored in a ‘true’ third normal form, tables are joined

to develop a similar view of the data as with the ‘Big Data’ view; the problem with this

approach is that it must be known in advance how to best join the tables and ensure that the

join operations are optimized. There are benefits to this approach, additional joins can be

used to expand the data view and views can be used to capture this information.

It may not be possible to construct a comprehensive index with fully normalized data or

the associated indexes with a record that may be spread across several tables. For example

if the name of the individual is kept in the person table and their address is stored within the

location table. The index entry (if the store is indexed within Solr repository) may include

the name and address points in two distinct rows in different tables.

6.3.1 Phonetic Index Encoding

There are numerous functions to store index entries that represent an index value of a

raw data item. These functions are usually intended to find index entries that are possible

matches of the selected criteria. Phonetic algorithms are useful to provide a fuzzy search

capability and allow for moderate spelling mistakes providing a comprehensive result set

as opposed to an exact search. It is important that indexes are case insensitive and ignore

the apostrophe that occurs within names like O’Brien and O’Neale. SLA through the use

of domains can indicate that a soudex or phoentic algorithms can be used to index the data.

In addition, tags can capture the type of algorithm that should be used to best query the

data.

6.3.1.1 Soundex

Soundex is a phonetic algorithm for indexing names by their sound when pronounced in

English. The basic aim is for names with the same pronunciation to be encoded to the same

6.3. INDEX NORMALIZATION 121

string so that matching can occur despite minor differences in spelling. Soundex is the most

widely known of all phonetic algorithms and is often used (incorrectly) as a synonym for

"phonetic algorithm".

Soundex was developed by Robert Russell and Margaret Odell and patented in 1918

and 1922. The Soundex code came to prominence in the 1960s when it was the subject

of several articles in the Communications Journal of the Association for Computing
Machinery (CACM and JACM), especially when described in Donald Knuth’s magnum

opus, The Art of Computer Programming.

The Soundex code for a name consists of a letter followed by three numbers: the letter

is the first letter of the name, and the numbers encode the remaining consonants. Similar

sounding consonants share the same number so, for example, the label B, F, P and V are all

encoded as 1. Vowels can affect the coding, but are never coded directly unless they appear

at the start of the name.

The exact algorithm is as follows:

1. Retain the first letter of the string

2. Remove all occurrences of the following letters, unless it is the first letter: a, e, h, i,

o, u, w, y

3. Assign numbers to the remaining letters (after the first) see figure: 6.1

4. If two or more letters with the same number were adjacent in the original name

(before step 1), or adjacent except for any intervening h and w, then omit all but the

first.

5. Return the first four bytes padded with 0.

6.3.1.2 Meta-phone

Meta-phone is a most popular alternative to Soundex. It was described by Lawrence Philips

when he published in the December, 1990 issue of ‘Computer Language’ magazine. Meta-

phone is an advanced version of Soundex which avoids the gross analysis of words. Meta-

phone works more exactly than Soundex and is more sensitive for changes in the sequence

122 CHAPTER 6. THE ‘SCHEMA-LAST’ APPROACH AND DATA EXPLORATION

Name Meta-

phone

Double

Metaphone

Soundex Cologne

Phonetic

Caverphone

1

Caverphone

2

Refined

Soundex

Nysiis Daitch

Mokotoff

Phonet

1

Phonet

2

peter PTR PTR P360 127 PT1111 PTA1111111 S360108 PATAR 739000 PETA PETA

paul PL PL P400 15 P11111 PA11111111 P107 PAL 780000 PAUL PAUL

mary MR MR M600 67 MR1111 MRA1111111 M8090 MARY 690000 MARI NARI

mariee MR MR M600 67 MR1111 MRA1111111 M600 MARY 690000 MARIE NARIE

stephen STFN STFN S315 8236 STFN11 STFN111111 S360108 STAFAN 276000 STEWN ZTEFN

steven STFN STFN S315 8236 STFN11 STFN111111 S360208 STAFAN 276000 STFN STFN

billy BL PL B400 15 PL1111 PLA1111111 B1070 BALY 780000 BILI BILI

bill BL PL B400 15 P11111 PA11111111 B107 BAL 780000 BIL BIL

joey J J J000 0 Y11111 YA11111111 J40 JY 100000 IOEI IUEI

joe J J J000 0 Y11111 YA11111111 J40 J 100000 IÖ IÖ

Table 6.2: Various name encoding algorithms

of the letters and for such combinations as “th”. It is based on a method that reduces

the words to 16 consonants. The precision is preserved and the variable areas are greatly

reduced.

6.4 Lucene and Apache Solr

number letter

1 B, F, P, V

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M, N

6 R

Table 6.1: Soundex algo-

rithm

Apache Lucene is a free open source information retrieval

software library, originally written in Java by Doug Cut-

ting. Lucene is essentially a text based indexing engine.The

Apache Solr project was created to provide independent in-

dexing capability. In addition, Solr provides powerful full-

text search, hit highlighting, faceted search, near real-time in-

dexing, dynamic clustering, database integration, rich docu-

ment handling, and geospatial search. Solr is highly reliable,

scalable and fault tolerant, providing distributed indexing,

replication and load-balanced querying, automated failover

and recovery and centralized configuration (Smiley and Pugh,

2011).

6.4. LUCENE AND APACHE SOLR 123

Letter Transformation

B B, unless at the end of word after "m"

C

X (sh), if "-cia-" or "-ch-"

S if "-ci-", "-ce-", or "-cy-"

Silent if "-sci-", "-sce-", or "-scy-"

otherwise, including in "-sch-"

D
J if in "-dge-", "-dgy-", or "-dgi-"

T otherwise

F F

G

Silent if in "-gh-" and not at end or before a vowel in "-gn" or "-gned" in "-dge-"

J if before "i", or "e", or "y" if not double "gg""

K otherwise

H
Silent if after vowel and no vowel follows or after "-ch-", "-sh-", "-ph-", "-th-",

"-gh-"

H otherwise

J J

K
Silent if atfer “c”

K otherwise

L L

M M

N N

P
F if berfore “h”

P otherwise

Q K

R R

S
X (sh) if before “h” or in “-sio-” or “-sia-”

S otherwise

T

X (sh) if "-tia-" or "-tio-" before "h"

0 (th) if before "h"

silent if in "-tch-"

T otherwise

V F

W
Silent if not followed by a vowel

W if followed by a vowel

X KS

Y SILENT if not followed by a vowel

Y if followed by a vowel

Z S

Figure 6.2: Double Meta-phone algorithm

124 CHAPTER 6. THE ‘SCHEMA-LAST’ APPROACH AND DATA EXPLORATION

Solr powers the search and navigation features of many of the world’s largest internet

sites. Solr is written in Java and runs as a standalone full-text search server within a servlet
container such as Apache Tomcat or Jetty. Solr uses the Lucene Java search library at its

core for full-text indexing and search, and has REST-like HTTP/XML and JSON APIs that

make it easy to use from virtually any programming language. Solr’s powerful external

configuration allows it to be tailored to almost any type of application without Java coding,

and it has an extensive plug-in architecture when more advanced customization is required.

Solr has a‘plug-in’ architecture which comes standard with phonetic based tokenizers

which include soundex and double-metaphone algorithms.

6.4.1 Document Inverse Frequency

Lucene utilizes a technique referred to as document inverse frequency which is the scoring

model adopted by Lucene and therefor Solr. At first glance, the Lucene scoring model may

seem confusing in that different searches will yield different term scores. Therefore, the

Lucene scoring model can appear intimidating to users of Solr.

Raw term frequency as above suffers from a critical problem: all terms are considered

equally important when it comes to assessing relevancy on a query. In fact certain terms

have little or no discriminating power in determining relevance. For instance, a collection

of documents on the auto industry is likely to have the term auto in almost every document.

To this end, a mechanism for attenuating the effect of terms that occur too often in the

collection to be meaningful for relevance determination. An immediate idea is to scale

down the term weights with high collection frequency should be introduced, defined to be

the total number of occurrences of a term in the collection. This would be to reduce the

term frequency weight of a term by a factor that grows with its collection frequency.

Consider a set, D , consisting of n documents:

D = {d1,d2...dn} (6.1)

and a set, T , consisting of m unique terms extracted from D:

T = {t1, t2...tn} (6.2)

6.4. LUCENE AND APACHE SOLR 125

Therefore:

1. The probability of randomly selecting any document from D is:

P(d) =
1
n

(6.3)

and the probability that this document mentions a term i from Y is:

P(di) =
di
n

(6.4)

2. The probability of randomly selecting any term from T is:

P(t) =
1
m

(6.5)

3. The probability that this term is present in a document j fromD is

P(t j) =
t j
m

(6.6)

4. Inverting these quantities and taking logs we obtain the following weight measures:

log(n/di) (6.7)

log(m/t j) (6.8)

Where the above two formulas are referred to as Inverse Document Frequency (IDF)

and Inverse Term Frequency (ITF) respectively. Both formulas can be written down as:

log((n− id)/di) (6.9)

log((m−m j)/t j) (6.10)

Both formulas are referred to as: IDF-Probabilistic (IDFP) and ITF-Probabilistic

(ITFP) and have a value of zero when n = di or m = t j. Therefore, when di > n
2 or t j > m

2

126 CHAPTER 6. THE ‘SCHEMA-LAST’ APPROACH AND DATA EXPLORATION

Negative weights are notorious for introducing retrieval complexities in IR and some

search systems that use IDFP and ITFP. A workaround for dealing with these negative terms

consists in rewriting these as having 0 weight values. To avoid negative terms, special tags

associated with the data source might identify stop words so that terms may be ignored by

the indexer.

6.4.2 The Solr Schema and Domain Mapping

The Solr schema and the Schema-Last schema complement each other. The domains

identify the relationship between the fields contained within the Solr schema and required

indexing strategy. The domains defined in each model must have an associated matching

Solr field.

In some cases a domain group is a more appropriate match for a specific Solr field.

An example of this would be if the model contained the first-name, middle-name, last-

name and the Solr schema only had a full-name. Then domain fields would need to be

concatenated to form a new term which becomes the token indexed by Solr. In addition,

multiple index strategies can be specified which include: exact, phonetic and n-gram which

expand the possibilities of finding the token within the Solr index.

6.4.3 The Solr Schema and Artefact Representation

Apart from the domains, the schema last artefacts need to be represented within the Solr
schema (see Figure 6.4 as an example). The major items that can be represented are the

store, bag and set. It is a requirement of Solr that each document must have an unique

identifier. This can be manufactured by using a UUID generator. The store identifier, the

bag position, the set position and the model which describes the domain layout if combined

can also be used to produce the unique identifier. Ultimately it is the UUID that identifies

the Solr entry.

Solr(id) = Sid +bn + sn +mn (6.11)

6.4. LUCENE AND APACHE SOLR 127

SLA Domain Solr Field

First Name
Last Name
Middle Name

Birth Day
Birth Month
Birth Year

Street Number
Street Name
City
Postcode

Full Name

Date of Birth

Street Address

Figure 6.3: SLA domain - Solr field mapping

6.4.4 The Solr Schema and Models

The models contained within a store - Sm- represent the indexing strategies that can be

applied to the store to locate individual store sets. Each model translates to a Solr document

where each domain - D - represents a field-name within the Solr schema (see Figure 6.5 as

an example of a Solr document). The Solr schema provides a catch-all where fields that

are not explicitly defined within the Solr schema obtain a default field definition.

Any cleansing is performed when the index is created and the underlying raw data

remains untouched. Solr allows for the addition of tokenizers which can be used to resolve

any form of data ambiguity (see Table 6.3). Tokenizers are fundamental to Solr in that it

is the tokenizer that generates the indexable tokens. The domain is used to identify the

appropriate tokenizer to generate the indexable tokens and address any ambiguity. The

analysts when the be presented with both the index values and raw data in a ranked order

determined by the Document Inverse Frequency score.

6.4.5 Search Chaining

The ‘Schema-Last’ Approach introduces the technique of Search chaining. The introduc-

tion of multiple models for a single store allows for a rich query capability where the

128 CHAPTER 6. THE ‘SCHEMA-LAST’ APPROACH AND DATA EXPLORATION

.

.

.

<field name="identifier" type="string" indexed="true" stored="true" required="true" /

>

<field name="store" type="string" indexed="true" stored="true" required="true" />

<field name="set" type="string" indexed="true" stored="true" required="true" />

<field name="bag" type="string" indexed="true" stored="true" required="true" />

<field name="name" type="phonetic" indexed="true" stored="true" multiValued="true" />

<field name="given -name" type="phonetic" indexed="true" stored="true" multiValued="

true" />

<field name="last -name" type="phonetic" indexed="true" stored="true" multiValued="

true" />

<field name="middle -name" type="phonetic" indexed="true" stored="true" multiValued="

true" />

<field name="full -name" type="phonetic" indexed="true" stored="true" multiValued="

true" />

<field name="organisation -name" type="phonetic -organisation" indexed="true" stored="

true"

multiValued="true" />

<field name="birth -date" type="string" indexed="true" stored="true" />

<field name="unit -number" type="text_general" indexed="true" stored="true"

multiValued="true" />

<field name="street -number" type="text_general" indexed="true" stored="true"

multiValued="true" />

<field name="street -name" type="text_street" indexed="true" stored="true" multiValued

="true" />

<field name="street -complete" type="text_street" indexed="true" stored="true"

multiValued="true" />

<field name="country" type="text_general" indexed="true" stored="true" multiValued="

true" />

<field name="address -complete" type="text_address" indexed="true" stored="true"

multiValued="true" />

<field name="reference -id" type="text_general" indexed="true" stored="true" />

<field name="_version_" type="text_general" indexed="true" stored="true" multiValued=

"false" />

<dynamicField name="*" type="text_general" indexed="true" stored="true" multiValued="

true" />

.

.

.

Figure 6.4: Snippet of a Solr schema

6.4. LUCENE AND APACHE SOLR 129

<add>
<doc>

< f i e l d name=" i d ">11111< / f i e l d >
< f i e l d name=" base "> f u s i o n < / f i e l d >
< f i e l d name=" s t o r e ">af158230−3630−11e4−8c21−0800200 c9a66 < / f i e l d >
< f i e l d name=" bag "> df f cbc10 −3630−11e4−8c21−0800200 c9a66 < / f i e l d >
< f i e l d name=" s e t ">c9570150−3630−11e4−8c21−0800200 c9a66 < / f i e l d >
< f i e l d name=" f u l l −name ">Aldus James Huxley< / f i e l d >
< f i e l d name=" f i r s t −name ">Aldus < / f i e l d >
< f i e l d name=" middle−name ">James< / f i e l d >
< f i e l d name=" l a s t −name ">Huxley< / f i e l d >
< f i e l d name=" da te−of−b i r t h ">20−Jun−1954< / f i e l d >

< / doc>
<doc>

< f i e l d name=" i d ">11111< / f i e l d >
< f i e l d name=" base "> f u s i o n < / f i e l d >
< f i e l d name=" s t o r e ">af158230−3630−11e4−8c21−0800200 c9a66 < / f i e l d >
< f i e l d name=" bag "> df f cbc10 −3630−11e4−8c21−0800200 c9a66 < / f i e l d >
< f i e l d name=" s e t "> f9f04240 −3630−11e4−8c21−0800200 c9a66 < / f i e l d >
< f i e l d name=" f u l l −name "> I s a a c F r e d r i c h Asimov< / f i e l d >
< f i e l d name=" f i r s t −name "> I s a a c < / f i e l d >
< f i e l d name=" middle−name "> F r e d r i c h < / f i e l d >
< f i e l d name=" l a s t −name ">Asimov< / f i e l d >
< f i e l d name=" da te−of−b i r t h ">21−Apr−1926< / f i e l d >

< / doc>
< / add>

Figure 6.5: Sample Solr document

Tokenizer Domain Sample Tokens Comment

Date of Birth Birth-Date 10/01/1962
10-01-1962 Ambiguity with day or month,

could be the first of October or the
the 10th of January

01-10-1962

Date of Birth Birth-Date 10/01/02

10-01-02

Ambiguity with day or month an
year.

10-01-02
01-10-02
02-10-01
02-01-10
01-02-10
01-10-02

Table 6.3: Tokenizer Ambiguity

130 CHAPTER 6. THE ‘SCHEMA-LAST’ APPROACH AND DATA EXPLORATION

analyst can utilise the results from a search result and use this as input to another search

(see Figure 6.6). Geospatial search capability enables search chaining through address and

locality attributes. Search Chaining is recursive and will eventually return all index entries

if not carefully managed.

Input Search Result

Figure 6.6: Search chaining

Bulk Matching has been identified as a

requirement of the agency in order that lists

of persons or company names, address or

contact details could be used as bulk input

to the various search engines. The nature of

the search was also taken into consideration

in the type of search where a low signal or

high signal search (see Sub-section 2.6.2)

was required. The results of the search were then returned and used as an intelligence
product through the dissemination process.

6.4.6 Search Federation

The Informatica Product - IIR - was purchased to support the ACC search capability. IIR

is a search engine not unlike Solr but has been tailored to populations. IIR was originally

developed in Canberra at the Department of Social Security in the early 80’s. Solr has

many of the features, however, it lacks the name synonyms that comes supplied with IIR.

These synonyms pertain to person names where contractions are often used by persons.

For example Steve is a contraction of Steven or Stephen is often used by a person as his

nick-name name or the names by which he is known.

Because there are now multiple search engines then the results can be federated into

a single view. The search federation takes advantage of ‘Schema Last’ Approach where

results are combined via the Set Identifier (see Section 5.4.1). The models define both the

Solr and IIR index construction and therefore enable the indexes to conform to a standard

schema representation.

6.5. SUMMARY 131

6.5 Summary

The ‘Schema-Last’ Approach provides the frame-work to produce a consistent approach to

index creation. Solr provides the infrastructure to generate a query of the large data stores as

part of the collation phase of the Intelligence Life-Cycle. A fundamental part of knowledge

discovery is the ability to explore the large data repositories and not be restricted to a single

search engine. This index creation and search capability is fundamental to populate the

match store as shown in the Section 5.8. Futhermore, the results from the various search

engines are then refined by algorithms.

The models defined by the analyst as part of the ‘Schema-Last’ Approach allow for a

consistent search experience for users of the system. The indexing capability is critical to

allow analysts to exploit the data sources. The next chapters will exploit the index strategies

defined in this chapter in that the search capabilities form the basis to fuse or reduce the

data for analytical purposes.

132 CHAPTER 6. THE ‘SCHEMA-LAST’ APPROACH AND DATA EXPLORATION

Chapter 7

The ‘Schema-Last’ Approach and Data
Matching

Integral to the Intelligence Life-Cycle is the ability to match entities such as a person,

organization or even an address from one or more data sources. This process is referred to

as entity resolution. Entity resolution begins to link the entities within a data source and

with entities contained within another separate data source. This process can be automated

or manual. In addition, if the entity resolution process was deemed to be incorrect then

the process must be reversed. In the case of the ACC, an ontology is used to identify

the entity characteristics and potential relationships. Ontologies are excellent in the way

entities can be classified and annotated. An ontology can be defined as: “An explicit formal

specification of how to represent the objects, concepts and other entities that are assumed

to exist in some area of interest and the relationships that hold among them.”

This chapter will examine data matching techniques that utilise the ‘Schema-Last’ Ap-

proach. The models reflect the structure of a store and its is input to the various matching

strategies. Furthermore, the chapter will introduce various strategies that could be used to

combine the various matching results together to formulate a single match score.

133

134 CHAPTER 7. THE ‘SCHEMA-LAST’ APPROACH AND DATA MATCHING

7.1 Entity Matching

To identify or classify an entity is important to build an ontological structure and form an

organizational consensus. Essentially, the analysts within the ACC were asked to identify

entities in intelligence documents, data sources. This was achieved through an informal

discussion. This was helped by a new strategic initiative to monitor Outlaw Motor Cycle

Gangs or OMCG. In addition, a list correlated by the various law enforcement agencies

identified persons that pose the greatest threat or risk to the Australian community. Lists

of individuals were then given to the ACC to determine whether the list contained the

following:

1. People: who are identified by a name and date of birth. A name alone may not be

able to identify a person.

2. Organizations: may have multiple names, the trading name and the registered name.

Commercial organizations may have a company name or Australian Business Num-

ber (ABN) or Australian Company Number (ACN).

3. Groups are similar to organizations and can have a structure and hierarchies.

7.2 Entity Resolution

Entity resolution is essentially the application of various algorithms to determine if two

entities in different data sources are identical. The simplest algorithm is to perform a com-

parison based where the first, last or complete name exactly matches a name in another

data source. Analysts have identified that there needs to be some other attribute like a per-

son’s date of birth, passport number or other personal identifier. In addition, sometimes the

date of birth is incomplete, for example, the Australian Criminal Intelligence Database can

record an incomplete data of birth with question marks to indicate a missing day, month or

year.

Entity resolution only indicates a possible or potential match. Unless the computed

entity resolution can be confirmed a probability or rating is associated with the actual res-

olution. The ‘Schema-Last’ approach utilises known identifiers, for example the ABN, to

7.3. DATA MATCHING 135

guarantees that the entity resolution is correct if both entities contain that particular identi-

fier. The match store is specifically designed to capture entity resolution and provides the

capability to un-resolve entities if the resolution is incorrect.

7.3 Data Matching

Fundamental to the intelligence process is the ability to match ‘like’ entities contained

within records. The ’Schema-Last’ Approach provides the framework to identify and

model entities, however to get the most out of intelligence data, therefore data match-

ing techniques must be employed to determine potential match candidates. The matching

algorithms presented in this chapter have been adapted to take advantage of ’Schema-Last‘

artefacts and meta-data.

7.3.1 The Data Matching Process

The data matching process relies extensively on field mapping utilizing the ‘Schema-Last’

Approach: indexing, candidate record pair identification and finally evaluation. The first

step in the process as described in Chapter 3 aims at defining the data structure, the models

and field classifications. The second step is to take the information from the previous step

and apply the structure to build indexes. The models from the previous step would have

identified attributes that relate to the data source such as a name field, date-of-birth, address

and possibly the cultural aspects about the data.

The indexes can then be used to record pair comparisons to determine potential

matches. If for example the match is certain then there may be no need for further human

intervention. However, there will be cases where it is necessary for a human to determine

the match status. It is possible that a human can be overwhelmed with potential matches

and it is important that most of record pair identification is performed by automated pro-

cesses. Results return from the data matching process are ranked from the most likely

match to the least likely. The analyst will still must make a determination which are the

potential matches.

136 CHAPTER 7. THE ‘SCHEMA-LAST’ APPROACH AND DATA MATCHING

There may also be duplicates within the results. It is important to establish the rea-

sons for the duplication. In some cases duplication could be the result of the same record

reoccurring within multiple snapshot data sets (See Section 2.7.2).

7.3.2 Data Ambiguity

The heterogeneous nature of data and the nature of variety comes at a price because it is

necessary to establish a process to eliminate or at least mitigate data ambiguity. For ex-

ample, consider two data sources which both contain a field called name. Data source one

contains the name where a person’s surname precedes their first name whilst data source

two contains the person’s first name followed by their surname. If both data sources are

combined this creates ambiguity within the name field. The judicious use of tags allows an

analysts to communicate the data matching process that there may ambiguous data present.

This can be factored into the scoring model as a part of the overall quality measurement.

7.3.2.1 Name Ambiguity

This is a significant problem within the ACC; some of the data can be ambiguous and

lack clarity. For example, often the data can represent a person or an individual. The data

contains for example ‘David Jones’: is that David Jones the organization or David Jones

the person. In addition, in some names it impossible to distinguish the first name from the

surname. For instance, a name appears in the data set: Anthony David is Anthony the first

name and David the surname or is it equally as plausible that David is the first name and

Anthony the surname (see Table 7.1). Another possible source of confusion in this problem

is name contractions. This is where David is commonly known as Dave, Stephen is also

known as Steve and so on. This type of ambiguity must also be taken into account. A

common practice is to build a list or database of known nick-names or name contractions

to determine ‘like’ names.

7.3.2.2 Date Ambiguity

Date is a field that can be problematic and pose special and unique problems. A date on

its own can be ambiguous and special attention must be paid to ensure that the date is

7.3. DATA MATCHING 137

Name Possible Name Format

Anthony David Anthony David First Name/ Surname
David Anthony Surname/ First Name

Figure 7.1: Name ambiguity

Date Possible Date(s) Format

12/09/10 12 of September 2010 DD/MM/YY
10 of September 2012 YY/MM/DD
12 of November 2009 DD/YY/MM
9 of December 2010 MM/DD/YY
9 of September 2012 YY/MM/DD

Figure 7.2: Date ambiguity

interpreted correctly. It may be possible that if the data set is sufficiently large that the

date can be determined by the other dates within the data source (see Table 7.2). This

assumption may still not be valid as date fields may contain errors. Unless there is absolute

certainty then ambiguous dates must somehow be resolved.

7.3.2.3 Indexing Strategies and Data Ambiguity

Data pre-processing may prevent some of the ambiguity if the format of the field is known.

In some cases this is not possible and even when stated the nature of the data entry may

result in ambiguous data. If identified early enough the data may be modified to suit the

processing rules that relate to the domain of the field. However, the act of modifying the

data’s content may have possibly introduced error.

The greatest challenge with ‘Big Data’ is the creation of indexes to allow the exploita-

tion of the ‘Big Data’ repository. It is important to choose an index strategy that locates

the rows in the ‘Big Data’ repository can be found quickly and efficiently. There is no

requirement that the indexes reside alongside the records within the ‘Big Data’ repository.

The ‘Schema Last’ Approach dictates that a schema only be used when it is required.

The index strategies can employ one or more fuzzy strategies. However, not all records

in a ‘Big Data’ repository need to be indexed. The big data can include archived records or

138 CHAPTER 7. THE ‘SCHEMA-LAST’ APPROACH AND DATA MATCHING

records that have limited value. This is a very different approach to relational implemen-

tations where every record is indexed. There are many reasons for this as certain records

may contain identification information where a name sensitive index is more appropriate.

Certain data sets may contain name fields where it is unclear which is the first and last

name. In that case the index entries need to reflect this and both names must be treated as

the first and last names. This also applies to ambiguous dates as multiple date index entries

ensure that ambiguous dates are searchable.

7.4 Data Matching Techniques

To perform match comparisons it is important to take into consideration subtle variations

to the name spellings. It is no longer sufficient to perform a direct comparison where two

names, addresses, or strings are compared character by character, only if there is an exact

match are they considered the same. To be able to fuse data it is important to recognize there

are a number of algorithms to assist in the match strings. These algorithms are comparing

the content of the string with another of a similar type. Some algorithms, particularly the

phonetic work better if the string contains a name which could be a person or organization

name or it makes sense to perform a phonetic comparison. In broad terms, the algorithms

can be subdivided into three main classifications (Cohen, 2001):

Phonetic: This class of algorithms translates the string (usually a name) to a phonetic

code. The phonetic code can then be compared with another and if both are identical

there is a good chance that the strings can be considered an approximate match.

Transformation: Hamming and Levenshtein distance algorithm identify similar strings

by determining what needs to changed for one string to become another. Therefore,

the more number of changes required the less likely the strings are to be same.

Gram: Bigram, n-gram and trigram algorithms are designed to identify minor mis-

spellings in names. The gram set of algorithms decompose both strings into either

bi-grams (two characters) or tri-grams (three characters). A number of algorithms

can be applied to n-grams as shown in Table 7.1.

7.4. DATA MATCHING TECHNIQUES 139

Level Pete - g
′

Peta - g
′′

g
′ ∪g

′′
g
′ ∩g

′′
g
′
+g

′′
Overlap Jaccard Dice

Level 1 pe,et,te pe,et,ta 4 2 6 2
4 = 0.5 1− 2

4 = 0.5 2×2
10 = 0.4

+Level 2 pt,ee pt,ea 7 3 10 3
7 = 0.42 1− 7−3

7 = 0.42 2×3
10 = 0.6

+Level 3 pe pa 9 3 12 3
9 = 0.33 1− 9−3

9 = 0.33 2×3
12 = 0.5

Table 7.1: n-gram comparison calculation

To satisfy the above approach a system must be in place to enable collected intelligence to

be collated and processed with no interference to the data itself. If the process does pervert

the data then the intelligence is unreliable.

7.4.1 N-gram Ratio Comparison

N-gram sometimes referred to as gram is an algorithm to compare two strings together. The

n-gram process is to split the string into short two letter sub-strings or q-gram and does this

for each letter pair with the string. A further refinement to the algorithm is to progress the

algorithm by skipping each subsequent letter until all letters are exhausted.

There are three formulas that can be used to measure the similarity between two words:

1. Overlapping coefficient
g
′ ∩g

′′

g′ ∪g′′
(7.1)

2. Jaccard Distance

1−

(
(g
′ ∪g

′′
)− (g

′ ∩g
′′
)

(g′ ∪g′′)

)
(7.2)

3. Dice Coefficient
2× (g

′ ∩g
′′
)

(g′+g′′)
(7.3)

All three methods, as the score approaches one, indicates a stronger string similarity.

140 CHAPTER 7. THE ‘SCHEMA-LAST’ APPROACH AND DATA MATCHING

7.4.2 Monge-Elkan String Comparison

Monge and Elkan (Monge, 1996) proposed a simple but effective method to measure the

similarity between two text strings that contain several tokens, using the internal similarity

function sim(a,b) to measure the similarity between two individual tokens a and b . Given

two texts A , B , with |A| and |B| being their respective number of tokens, and an external

inter-token similarity measure sim
′
.

simMongeElkan (A,B) =
1
|A|

|A|

∑
i=1

max
{

sim
′ (

ai,b j
)}|B|

j=1

7.4.3 Levenshtein String Comparision

The edit distance was originally proposed by Levenshtein. It is equal to the minimum

number of editing operations required to transform one sequence into the other. The three

basic editing operations are insertion, deletion, and substitution. Several modifications to

the original edit distance have been proposed, varying cost schemes and adding more edit

operations such as transpositions, opening, and extending gaps. The solution for computing

the edit distance is a dynamic programming algorithm that stores in a matrix the counts

of edit operations for all possible prefixes of both strings. This algorithm computes the

edit distance between two strings a and b of length |a| and |b| with a time complexity of

O(|a|× |b|) and space complexity of O(min(|a||b)) . The edit distance measure can be

normalized in the range [0,1] by dividing the total number of operations by the number

of characters in the longer string. Once normalized, the edit distance can be converted to

similarity by subtracting the distance value to the number 1.

7.5 Stochastic Considerations

Almost any score should consider stochastic attributes within the score formulation.

Stochastic attributes would include the quality of the data, the time between the time dif-

ference when both data stores were collected which in turn affects the overall score. The

’Schema-Last’ Approach utilizes meta-data to contain those values and allows for those

values to be used as input as part of the match determination.

7.5. STOCHASTIC CONSIDERATIONS 141

7.5.1 Data Quality

The stores meta-data may have indicators that should be applied to the score calculation.

For example, if a store contains data that may be considered of poor quality and the com-

pared store has data that is of good quality then this can also be reflected in the overall

score. It must be noted that all quality indicators must both be scaled on the same axis, for

example 0 to 10.

The quality function is:

• a is the first quality score

• b is the second quality score

• Qd is the quality function to measure data

Qd(a,b) =
√

(a−b)2 (7.4)

An example of quality function in use (both: a and b; maximum value is 10 where 0

means no quality and 10 means high quality)

• a = 5 out of 10

• b = 4 is the second quality score

• Q is the quality function

Qd(a,b) =
√
(5−4)2 = 1 (7.5)

7.5.2 Time of Collection

As data ages the value of the data diminishes over time. The principle of ROT (Redundant

Obsolete Trivial) can apply to intelligence data. Therefore if two data sets were collected

at different time periods then this can be used to calculate the score. This novel algorithm

devised as part of the ‘Schema-Last’ Approach is an enhancement to current data matching

algorithms where the time of the collection is recorded within the meta-data associated with

the store. The Equation 7.6 returns an estimate of the quality and the larger the number, the

142 CHAPTER 7. THE ‘SCHEMA-LAST’ APPROACH AND DATA MATCHING

further apart the collection periods were taken. At the ACC the time difference is measured

in days and the accuracy of a day is determined to be accurate enough.

Qt(a,b) = log(1+
√

(a−b)2) (7.6)

• a = 12/Jun/2014

• b = 1/Jun/2014

• 376 is the number of days between the above two dates

Qd(a,b) = log(1+
√
(−376)2) = 2.57 (7.7)

The higher the number, the less likely the relevance of the match. Usually any score greater

than 2.50 should be considered for rejection.

7.5.2.1 Time of Observation

A further extension to the above model is if a set has an associated temporal dimension

within the set. Instead of using the collection date associated with the store the time asso-

ciated with the set can be used in conjunction or instead. The same formula can be used

but instead of using the collection date this date can be used. The name of the column of

the observation time can be identified by a special domain.

7.5.3 Intelligence Rating

A further stochastic criteria to be considered is how reliable is the data in the first place.

If the data is from an unreliable data source then this can also be factored into the final

score. Unlike quality where the difference is important, reliability is a multiplication of

both indicators. The Admiralty System or NATO System (US-Army, 2006) is a method

for evaluating collected items of intelligence and this provides a scheme to measure data

reliability (see Figure 7.3). It can be used to determine the quality of match in that it can

be used to contain an intelligence rating value. The intelligence rating would be applied to

7.5. STOCHASTIC CONSIDERATIONS 143

Symbol Value

A Completely reliable
B Usually reliable
C Fairly Reliable
D Not usually reliable
E Unreliable
F Reliability cannot be judged

Symbol Value

1 Confirmed by other sources
2 Probably true
3 Possibly true
4 Doubtful
5 Improbable
6 Truth cannot be judged

Figure 7.3: Admiralty system

the entire store and represented as meta-data. If both compared sources are truthful, then

the intelligence rating needs to be applied to the final match result.

• a is the first quality score (using only reliability)

• b is the second quality score (using only reliability)

• h is the lowest qualitative score (6) for both reliability and accuracy

• Qr is the reliability function to measure data

• Qa is the accuracy of the data

Qr(a,b) = 1− a×b
h2 (7.8)

An example of reliability function in use (both :a and b maximum value is 6 where 1

means highly reliable and 6 is not reliable)

• a = 3 out of 6 (a = 1..6)

• b = 4 out of 6 (b = 1..6)

• Q is the quality function

Qr(a,b) = 1− 3×4
62 = 0.66 (7.9)

144 CHAPTER 7. THE ‘SCHEMA-LAST’ APPROACH AND DATA MATCHING

Name1 Name2 Hamming
Distance

Levenshtein
Distance

Sgram Trigram Soundex
similar-
ity

Monge
Elkan

smyth smith 1 1 0.429 0.250 4 0.68
peter peta 2 2 0.421 0.286 3 0.9
stephen steven 4 2 0.345 0.300 4 0.76
peter paul 4 4 0.038 0.0 2 0.45
billy bill 1 1 0.600 0.500 4 1
joey joey 0 0 1 1 4 1

Table 7.2: Various name matching test results

7.5.4 Rarity of Name

If an organization is fortunate enough to have a complete set of names then the rarity of

the name can be factored into the score. For example, John Smith is a common name in

Anglo centric communities, however Patrick Dempsey is not so common and the rarity of

the name can be factored into the score. Therefore, if the name in two independent sets

from two stores contain the name Patrick Dempsey it is probable that they are the same

name. If however, the name is John Smith, by virtue that the name is very common, there

is a high probability that these name are not a match. The rarity of name can be stored as

meta-data with the associated set.

7.6 Multiple-criteria decision analysis

Individual matching algorithms have been discussed in the previous section, however mul-

tiple algorithms will lead to a more accurate match result. Matching two names and as-

sociated addresses can be interpreted in different ways. The match could correspond to

choosing the best alternative from a set of available alternatives. Another interpretation of

‘solving’ could be choosing a small set of good alternatives, or grouping alternatives into

different preference sets. An extreme interpretation could be to find all efficient or non-

dominated alternatives. For example in Table 7.2 each algorithm can be used to compare

two names and the best score is chosen to indicate the match result.

7.6. MULTIPLE-CRITERIA DECISION ANALYSIS 145

7.6.1 Decision Trees

Decision Trees can be defined as (Tom, 1997):

1. Define the problem.

2. Identify decision alternatives.

3. List the possible outcomes of each decision alternative.

4. Represent the sequence of events using chance nodes (events determined by chance)

or decision nodes (events determined by a decision).

Decision Trees provide the structure to determine a single match score by selecting scores

(see Figure 7.4). Weights assoicated with the score can be used to select the appropriate

path within the decision tree. An extension to this model is the Markov Chain where the

determination of alternate paths can be explored to formulate the match result.

7.6.2 Markov Chains

The Markov model treats a sequence of events over time as a series of state transitions. The

model assumes that there is only a finite number of Markov states. Events are modelled

as transitions between states or transitions within a state, meaning that after one period, a

single Markov cycle.

The progressive state would either strengthen or weaken the hypothesis that the entities

are the same along the Markov chain as represented in Figure 7.5. Unlike the decision tree

approach it is possible to revisit states and accumulate each score until the end state has

been reached. To manage Transitive Closure there may be a point when there is no need

to continue along the finite state path if the accumulated score exceeds a certain threshold.

This has the advantage that the entire path is not required to be traversed to obtain an

acceptable result without the necessity to traverse the entire graph. Both the PROLOG

and LISP languages provide the capability to terminate via the ‘Cut’ construct where the

algorithm has determined that there are no more valid alternate paths.

146 CHAPTER 7. THE ‘SCHEMA-LAST’ APPROACH AND DATA MATCHING

Birth Date
Present Address

is Absent

Address
is Present

Birth Date
Absent

Address
is Absent

Address
is Present

Figure 7.4: A Simple Decision Tree

AddressMatch

NameMatch DOBMatch1/4

1/2

1/2

1/4

1/2 1/2

1/2

Figure 7.5: Markov chain example

7.6.3 The Weighted Sum Model

The weighted sum model (WSM) is a model that can accumulate one or more scores and

weight each score individually and return a single result where 1 is a perfect score (Trianta-

phyllou, 2002):

The model can be defined as:

• sn is the score out of a hnwhere n is the specific test

• m is the number of tests performed

• wn is the weight associated with the test

P(S,H) =
n

∑
j=1

(
s j×w j

h j×w

)
(7.10)

Example of a test with two match indicators :

• s1 = 80 is a phonetic name score out of a possible 100 (h1 = 100)

• s1 = 70 is a geospatial score of 70 out of a possible 100 (h1 = 100)

• w1 = 8 the weight of a name

• w2 = 2 weight for geospatial match which is 4 times less significant than a phonetic

name match

• m = 2 the number of match score results

7.6. MULTIPLE-CRITERIA DECISION ANALYSIS 147

(80∗8)+(70∗2)
(100∗8)+(100∗2)

= 0.78 (7.11)

7.6.4 The Weighted Product Model

The weighted product model (WPM) is similar to the weighted sum model except all tests

must yield a result > 0 otherwise there is no result at all (Triantaphyllou, 2002).

The weighted product model can be defined as:

• sn is the score out of a standardized (hn = 100)

• m is the number of tests performed

• wn is the weight associated with the test

P(S,H) =
n

∏
j=1

(
s j

h j

)w j

(7.12)

Example of a test with two match indicators :

• s1 = 80 is a phonetic name score out of a possible 100 (h1 = 100)

• s2 = 70 is a geospatial score of 70 out of a possible 100 (h2 = 100)

• w1 = 0.8 the weight of a name

• w2 = 0.2 weight for geospatial match which is 4 times less significant than a phonetic

name match

• m = 2 the number of match score results

(
80

100
)0.8× (

70
100

)0.2 = 0.7 (7.13)

7.6.5 Stochastic Weighted Average Score

If a quality measure is introduced it could be kept within a user-specified tag within the

store (see 5.4.13). An example would be a data quality dimension which would be a value

from 0 to 10 for example where 10 is high quality and zero is no quality. Other examples

would be the timeliness of the data as the data ages the value may diminish.

148 CHAPTER 7. THE ‘SCHEMA-LAST’ APPROACH AND DATA MATCHING

• sn is the score out of a hn

• m is the number of tests performed

• wn is the weight associated with the test

• Sqn is a quality measurement assigned to data source - a meta-data value associated

with the store.

• vn is maximum quality measurement

• n is the number of tests performed

P(S,H,Q) =
n

∑
j=1

(
s j×w j

h j×w

)
×

n

∑
k=1

(
Sqk

vk

)
(7.14)

Example of a test with two match indicators :

• s1 = 80 is a phonetic name score out of a possible 100 (h1 = 100)

• s2 = 70 is a geospatial score of 70 out of a possible 100 (h2 = 100)

• w1 = 8 the weight of a name

• w2 = 2 weight for geospatial match which is 4 times less significant than a phonetic

name match

• m = 2 the number of match score results

• q = 8 the quality measurement out of a possible 10.

(80∗8)+(70∗2)
(100∗8)+(100∗2)

× 8
10

= 0.64 (7.15)

7.6.6 The ACC ‘Aries’ Score

The ACC took a unique approach to determine a score from utilizing multiple criteria score

and called this the ‘Aries score’. The score is an accumulation of all the scores into a single

number where each position within that number represents the score for a specific test.

Each test must be scaled from zero to a upper limit number (usually 9) where this scale

represents the test score. An example of this approach is as follows:

7.6. MULTIPLE-CRITERIA DECISION ANALYSIS 149

• s1 = 8 is a phonetic name score out of a possible 9 (h1 = 9) possible scores are

{0,1,2,3,4,5,6,7,8,9}

• s2 = 7 is a geospatial score of 7 out of a possible 9 (h2 = 9) possible scores are

{0,1,2,3,4,5,6,7,8,9}

• s3 = 5 is a date-of-birth score of 5 out of a possible 9 (h3 = 9) possible scores are

{0,1,2,3,4,5,6,7,8,9}

• s4 = 6 is a monge-elkan score of 6 out of a possible 91 (h4 = 9) possible scores are

{0,1,2,3,4,5,6,7,8,9}

• m = 4 the number of match score results

′Aries−Score′ = [8756] (7.16)

Certain score combinations werezb considered to indicate a closer match and unless

the score yielded results where name score was greater than 8 then this was deemed ‘not a

match’. For example: the Analysts at the ACC considered that scores greater than 7 was a

close match for example:

The Name Thomas Jones matched with Tom Jones both born on the 15 February 1971

then the calculated Aries score would be:

• s1 = 7 is a phonetic name score out of a possible 9 (h1 = 9) for the match Tom to

Thomas

• s2 = 0 is a geospatial score out of a possible 9 (h2 = 9)

• s3 = 9 is a date-of-birth out of a possible 9 (h3 = 9)

• s4 = 8 is a monge-elkan scoreout of a possible 9 (h4 = 9)

′Aries−Score′ = [7098] (7.17)

The analysts used as a rule of thumb any ‘Aries score’ any score with 3 componets greater

or equal to ‘7’ a good match.

1The monge-elkan score has been scaled

150 CHAPTER 7. THE ‘SCHEMA-LAST’ APPROACH AND DATA MATCHING

7.7 Data Matching Techniques in Practice

Whatever matching technique is chosen to match one set of records with another then the

number of records can pose a significant computational problem. The approach taken at the

ACC was to utilise the elastic indexes as much as possible and utilise the data exploration

approach as described in Chapter 6. Furthermore, the data exploration will return a set of

results which when further refined can be made subject to the various matching techniques

as described in this chapter. These matching techniques could act as an additional filter to

a set of results returned from a search query.

The Aries score was discarded because of confusion amongst the data analysts; it was

found to be difficult to compare one score with another. This was replaced by the Weighted
Sum Score as described in this chapter and was found to be an effective way to share the

match results with other analysts. The ACC intelligence analysts have also requested that

any score that is an amalgamation of multiple scores that each individual score be presented

within the report.

7.8 Summary

This chapter discussed various algorithms and how data matching can be applied to sets.

The next chapter will discuss how data can be fused into a single view by utilizing the

matching algorithms described in this chapter and thereby allowing the analyst to have a

single and consistent view of the data. The next chapter will take the algorithms presented

in this chapter and apply these algorithms to fuse and reduce data sets.

Chapter 8

The ‘Schema-Last Approach’ and Data
Fusion

Data fusion is the adoption of a single logical view across all data sources. This can be

expressed as the sum of all the assessable data sources. The assets include all the models,

meta-data and domain specification and utilize the data exploitation and matching process

described in the previous chapters. Data fusion can only be achieved if the index engines

are built and tuned (see Chapter 6).

The data source does not have to be local to the organization but contained within a

cloud environment or a public network. The section will demonstrate how the ‘Schema-

Last’ Approach provides the platform to enable a consistent approach to data fusion. Data

fusion is a multidisciplinary area that involves several fields, and it is difficult to establish

a clear and strict classification.

Apache Hadoop provides the means to produce the fused data. SLA can assist Apache

Hadoop to provide the maps as the input to the ‘map phase’ in regard to the map reduction

process.

This chapter will demonstrate how both data fusion and data reduction can utilize the

‘Schema-Last’ Approach.

Intelligence processing involves both information processing and information fusion.

Gathering intelligence is generally provided at a high level. In the world of intelligence the

151

152 CHAPTER 8. THE ‘SCHEMA-LAST APPROACH’ AND DATA FUSION

data is often presented in the form of an intelligence report which is already at a high level

of abstraction – either free form text or in a predefined report.

• Collation – associated intelligence reports are correlated and brought together. Some

combination or compression may occur at this stage. Collated reports, however, may

simply be packaged together ready for fusion at the next stage.

• Evaluation – the collated intelligence reports are fused and analyzed. Historically,

highly skilled human intelligence analysts have undertaken this process. The anal-

ysis may identify significant gaps in the intelligence collection. In this case, the

analyst may be able to task a collection asset directly. More usually, however, this

requirement is included in the disseminated information.

• Dissemination – the fused intelligence is distributed to the users (usually military

commanders) who use the information to make decisions regarding their own actions

and the required deployment of further collection assets.

This chapter is organized in the following manner:

• examine existing data fusion models

• where data fusion can benefit from the ‘Schema-Last’ Approach

• the role ‘Schema-Last’ Approach has with data munging

• the role ‘Schema-Last’ Approach has with data reduction

8.1 Data Fusion and Data Reduction

There are well defined data fusion classifications. These classifications will be discussed

in turn and will show how each model can benefit by the ‘Schema Last’ Approach. Data

fusion is combining data sources into a consolidated view whilst data reduction is the op-

posite where the data is summarized for further data analysis.

8.1. DATA FUSION AND DATA REDUCTION 153

Sensing

Situation Assessment

Pattern Processing

Feature Extraction

Signal Processing

Sensing

Figure 8.1: The Waterfall model

Observe

Determine

Suitablity

Act

Figure 8.2: The Boyd loop

8.1.1 The Waterfall Model

The Waterfall Model (Bedworth and O’Brien, 2000) places its main emphasis equivalence

on approximates as its name suggests is not an iterative process. Even though not widely

used the technique forms the basis for other models. For example the JDL and Dasarathy

models.

8.1.2 Boyd Loop

The Boyd Loop has been widely used for data fusion even though the process is based on

a military strategy identified by John Boyd in the early sixties (Boyd, 1987). The Boyd (or

OODA) Loop is an improvement on the Waterfall Model because the process is iterative.

The inherent feed-back loop enables the process of data fusion to continuously improve.

154 CHAPTER 8. THE ‘SCHEMA-LAST APPROACH’ AND DATA FUSION

8.1.3 The JDL Model

In the JDL model, proposed by the US Joint Directors of Laboratories Data Fusion Sub-

Group in 1985 (Bedworth and O’Brien, 2000) and recently updated, the processing is di-

vided into five levels as shown in Figure 8.3.

Level 0 – sub-object data assessment, is associated with pre-detection activities such as

pixel or signal processing, spatial or temporal registration.

Level 1 – object refinement, is concerned with the estimation and prediction of continuous

(location or kinematic) or discrete (behavior or identity) states of objects.

Level 2 – situation refinement, introduces context by examining the relations among en-

tities such as force structure and communication roles. By aggregating objects into

meta-objects an interpretation may be placed on the situation.

Level 3 – implication refinement, delineates sets of possible courses of action and the

effect they would have in the current situation. This level also introduces the concept

that the data fusion system may be operating in an adversarial domain.

Level 4 – process refinement, is an element of resource management is used to close the

loop by re-tasking resources (e.g. sensors, communications and processing) in order to

support the objectives of the mission.

This model has been widely used by the US data fusion community and can now be

regarded as the de facto standard for defense data fusion systems, at least in the US. Partly

because of its popularity it is applied in a variety of ways and not always used appropri-

ately. The JDL model was never intended to prescribe a strict ordering on the data fusion

levels. This was indicated diagrammatically by the use of an information bus rather than a

flow structure. Nevertheless, data fusion system designers have consistently assumed this

ordering. Clearly there is a need for users to have an ordering whilst the authors of the JDL

model rightly defend the need for a model which admits systems with different hierarchies

at different levels.

8.1. DATA FUSION AND DATA REDUCTION 155

8.1.4 Durrant-Whyte Classification

The employed methods and techniques can be divided according to the following criteria:

attending to the relations between the input data sources, as proposed by Durrant-Whyte.

These relations can be defined as:

• complementary;

• redundant, or cooperative data;

• according to the input/output data types and their nature, as proposed by Dasarathy;

• following an abstraction level of the employed data:

• raw measurement;

• signals;

• characteristics or decisions;

• based on the different data fusion levels defined by the JDL;

• Depending on the architecture type:

– centralized,

– decentralized, or

– distributed.

8.1.5 Dasarathy’s Classification

One of the most well-known data fusion classification systems was provided by Dasarathy

(Dasarathy, 1997) and is composed of the following five categories (see Figure 8.4):

1. Data in-data out (DAI-DAO): this type is the most basic or elementary data fusion

method that is considered in classification. This type of data fusion process inputs

and outputs raw data; the results are typically more reliable or accurate. Data fusion

at this level is conducted immediately after the data are gathered from the sensors.

156 CHAPTER 8. THE ‘SCHEMA-LAST APPROACH’ AND DATA FUSION

The algorithms employed at this level are based on signal and image processing

algorithms data in-feature out.

2. (DAI-FEO): data is combined to derive some form of a feature of the object in the

environment or a descriptor of the phenomenon under observation. Fusion in this

mode, depending on one’s view point, input-fusion of data or output-fusion resulting

in features, has been looked upon either as data fusion or feature fusion. Feature

fusion has also been variously referred to as symbolic fusion, information fusion,

fusion at the intermediate level, and so on. The manner in which depth perception

is achieved in humans, by combining the visual information acquired from the two

eyes, can be looked upon as a classical paradigm of this feature or information fusion.

Indeed techniques based on this kind of paradigm have been investigated for machine

perception of depth in robotic systems. The traditional approach to the computation

of object surface temperatures using the intensities from two infrared (IR) bands of a

multispectral scanner is another good example of data in-feature out mode of fusion

processing. In some cases, this fusion mode may be the first step with the previous

mode being totally absent.

3. Feature in–feature out (FEI-FEO): at this level, both the input and output of the data

fusion process are features. Thus, the data fusion process addresses a set of features

to improve, refine or obtain new features. This process is also known as feature

fusion, symbolic fusion, information fusion or intermediate-level fusion;

4. Feature in-decision out (FEI-DEO): this level obtains a set of features as input and

provides a set of decisions as output. Most of the classification systems that perform

a decision based on a sensor’s inputs fall into this category of classification.

5. Decision in-decision out (DEI-DEO): This type of classification is also known as

decision fusion. It fuses input decisions to obtain better or new decisions.

8.1. DATA FUSION AND DATA REDUCTION 157

Pre-processing

Single-object refinement

Situation refinement

Implication refinement

Process refinement

Figure 8.3: JDL model

Data Data In/Out Data

Data Data In/Feature Out Features

Features Feature In/Feature Out Features

Features Feature In/Decision Out Decisions

Features Feature In/Decision Out Decisions

Figure 8.4: Dasarathy’s classification

8.1.6 Thomopoulos Classification

Thomopoulos (Thomopoulos, 1989) posed an architecture for data fusion consisting of

three modules, each integrating data at different levels or modules to integrate the data,

namely:

• Signal level fusion, where data correlation takes place through learning due to the

lack of a mathematical model describing the phenomenon being measured.

• Evidence level fusion, where data is combined at different levels of inference based

on a statistical model and the assessment required by the user (e.g. decision making

or hypothesis testing).

• Dynamics level fusion, where the fusion of data is done with the aid of an existing

mathematical model.

Thomopoulos describes the fusion process as:

“A fusion system can be a very complicated system. It is composed of sources

of information, of means of acquisition of this information, of communications

158 CHAPTER 8. THE ‘SCHEMA-LAST APPROACH’ AND DATA FUSION

for the exchange of information, of intelligence to process the information and

to issue information of higher content. The issues involved may be separated

in topological and processing issues. Despite the interconnection between both

issues in an integrated fusion system design, they can be decoupled from each

other in order to facilitate the development of a systematic methodology of

analysis and synthesis of a fusion system (Thomopoulos, 1991).”

8.1.7 Fusion Models and Intelligence Life-Cycle

Dasarathy, JLA Thomopoulos classifications align closely with the Intelligence Life-Cycle.

The collection and collation phase must be cognizant of the fusion approach and apply the

fusion classification accordingly. The Thomopoulos classification demands a hypothesis

or a rationale to build the fused data view. The importance of construction of a fused view

of the data cannot be under-estimated, however tools are required or built for analysts to

exploit the fused data. Fused data is prepared as part of the collation or processing phase

of the Intelligence Life-Cycle.

Data reduction technologies, for example map/reduce allow the analysts to develop

algorithms which extract data to be used for statistical analysis or reporting purposes. Data

reduction can utilize the matching algorithms from the previous section. It may be neces-

sary to employ and develop data munging techniques to effectively ‘fuse’ the data.

8.2 Data Munging and Data Fusion

Data munging or data wrangling is loosely the process of manually converting or mapping

data from one ‘raw’ form into another format that allows for more convenient consumption

of the data with the help of semi-automated tools (Raymond, 1996). This may include

further munging, data visualization, data aggregation, training a statistical model, as well

as many other potential uses. Data munging as a process typically follows a set of general

steps which begin with extracting the data in a raw form from the data source, ‘munging’

the raw data using algorithms (for example sorting) or parsing the data into predefined

data structures, and finally depositing the resulting content into a data sink for storage and

8.3. DATA FUSION QUALITY 159

future use. Given the rapid growth of the internet such techniques will become increasingly

important in the organization of the growing amounts of data available.

8.3 Data Fusion Quality

‘Big Data’ is an asset and like any asset can lose value over time. The life cycle of data

can be described as a never ending-cycle whereby data enters the system and ultimately is

stored and becomes part of the‘Big Data’ repository. Finally data may be retired once the

value of data diminishes. Another characteristic of data is that data can be copied, manipu-

lated and analyzed. Data annotation is also important to enhance the data’s usefulness. For

example, the data source, the update frequency and the data’s credibility are all important.

8.3.1 Data Collection and Data Fusion

The cost to input a collection into a database can be substantial (Armstrong, 1992) but is

only a fraction of the cost of checking and correcting the data at a later date. It is better to

prevent errors than to cure them later (Redman, 2001) and it is by far the cheaper option.

Making corrections retrospectively can also mean that the incorrect data may have already

been used in a number of analyses before being corrected, causing downstream costs of

decisions made on poor data, or of re-conducting the analyses (Chapman, 2005).

8.3.1.1 Prevention is better than cure

The primary responsibility for the management of data quality rests with the collector of

the data. It is their responsibility to make sure that:

• label information is correct,

• label information is accurately recorded and documented,

• allocate the domain correctly to each data item,

• locality information is as accurate as possible, and both accuracy and precision are

documented,

160 CHAPTER 8. THE ‘SCHEMA-LAST APPROACH’ AND DATA FUSION

• collection methodologies are fully documented and

• label or field notes are clear and unambiguous.

The importance of data collection cannot be underestimated.

8.3.2 Incomplete or Missing Data

Incomplete data values are a considerable problem in any data fusion process and will re-

quire some kind of action either programmatic or human intervention. The most common

approach to missing data is to simply omit those cases and to run analyses on what re-

mains. Thus if five subjects in a group one do not show up to be tested, that group is five

observations short. Or if five individuals have missing addresses on one or more variables,

those rows are simply omitted from the analysis or index. This approach is called list-wise

deletion.

The imputation of missing values can be at best problematic but can be based on pre-

vious data within the data source. At least some of the data’s attributes may be imputed.

For example if the sets are modified to include imputed values then this has perverted the

original data.

The null value is another solution to the incomplete data in that null values indicate that

the value is unknown. Meta-data associated with the data source through the use of tags

can best be used to denote missing or imputed values. In addition, the quality of the data

source would deteriorate and this could also be reflected in the meta-data.

8.4 Data Reduction

The sheer size and complexity of the data set sometimes makes the analysis daunting, but a

large data set may also yield richer and more useful information. Data reduction strategies

combine qualitative and quantitative analysis techniques for the analysis of large, qualita-

tive data sets. In broad terms data reduction is the application of algorithms to reduce a

large data set to a summarized form. The benefits of the data reduction techniques pro-

posed increase as the data sets themselves grow in size and complexity. The application of

8.4. DATA REDUCTION 161

data mining techniques or general map reduction strategies (Namey et al., 2007), provides

the capability to develop a deeper understanding of the data, relationships, or any associ-

ations without de-emphasizing the importance of the context and richness of the original

data. Data reductions bring a perspective and focus to the multiple interpretive lenses that

a group of researchers brings to team-based analysis.

Data reduction provides the platform for a deep understanding of the data without af-

fecting the underlying raw data set.

8.4.1 Map Reduction

Map-Reduce is the heart of Hadoop®. It is this programming paradigm that allows for

massive scalability across hundreds or thousands of servers in a Hadoop cluster. The map

job, takes a set of data and converts it into another set of data where individual elements

are broken down into tuples (key/value pairs). The reduce job takes the output from a map

as input and combines those data tuples into a smaller set of tuples. As the sequence of the

name Map-Reduce implies, the reduce job is always performed after the map job. The result

may not always be a reduction, but equally be a data source fusion. SLA complements the

Map-Reduction because it provides the models and structures to identify the label, domains

and structure to the reduction phase (see Figure 8.6).

Fusing or munging two or more data sets can be achieved utilising the store models and

domains described in Section 5.4.4.9. If this is true for any two data sources then these two

data sources can be fused. The fused result may or may not include unassigned cells (cells

without an assigned domain).

Languages as Apache Pig (see Figure 8.5 a very simple code sample) and Apache Hive

are designed to simplify the Hadoop platform and provide a platform to munge or fuse data.

Both products are open source products and Apache Pig was developed by Facebook as a

map-reduction platform and was later made available to the open-source community.

8.4.2 Data Reduction and Hadoop

As ‘Big Data’ and Apache Hadoop go hand-in-hand. Apache Hadoop is an open source

software project that enables the distributed processing of large data sets across clusters of

162 CHAPTER 8. THE ‘SCHEMA-LAST APPROACH’ AND DATA FUSION

register "eland -pig -1.10- SNAPSHOT.jar"

register "file:/usr/lib/pig/piggybank.jar"

register "peppapig -1.0- SNAPSHOT.jar"

dump_set = LOAD "fusion :// localhost :9160/ identifier" USING

org.eland.pig.storage.ElandReader ("id");

extract = FOREACH dump_set $0 , $1 , $2;

STORE extract INTO `temp.pig ' using PigStorage ("~");

Figure 8.5: Apache Pig example

Hadoop

Apache−Pig

Apache−Hive

Store

Models

Figure 8.6: Hadoop and the ‘Schema-Last’ Approach

commodity servers. It is designed to scale up from a single server to thousands of machines,

with a very high degree of fault tolerance. Rather than relying on high-end hardware, the

resiliency of these clusters comes from the software’s ability to detect and handle failures

at the application layer Hadoop is not used for data storage, but is best served for data

processing or fusing. Apache Pig provides an interface for programmers or vendors to

write their own extraction and storage routines. This provides a user-friendly development

interface to the set stores to provide a mechanism to bulk extract and process sets. In

addition, the store models and meta-data can be used as input to the map reduction as part

of the Apache Hadoop processing.

8.5. SUMMARY 163

8.5 Summary

The ‘Schema-Last’ Approach is an essential part of data fusion. The data can be fused and

presents a consolidated view to any analytical processing. The new tools Apache Hadoop,

Apache Flume just to name a few can all be used to fuse data sets into a consolidated view.

Data fusion and reduction are essential for data analysis whether the fusion is semantically

linking like entities or formulating the ‘single source of truth’. Informatica has developed

products that address data fusion and state:

“Fusing intelligence-driven security data from multiple sources and process-

ing it with big data analytics has the potential to solve this problem. But first,

analysts need to identify relevant information and recognize its potential rela-

tionships to other data points. The sheer volume of data makes it very difficult

to detect, analyze, and act on threats from any single source. ‘Big data’ ana-

lytics rises to this challenge and presents an opportunity to garner intelligence

collectively from all of the pieces.(Informatica, 2014)”

The next chapter will present a case study which demonstrates the ‘Schema-Last’ Approach

and how this approach could present the data as a consolidated view.

164 CHAPTER 8. THE ‘SCHEMA-LAST APPROACH’ AND DATA FUSION

Chapter 9

The ‘Schema-Last’ Approach: A Case
Study

The ACC determined that the existing process to ingest data as part of the collation phase

of the Intelligence Life-Cycle was unable to cope with the influx of existing data sources

(see Figure 9.1)1. This meant a novel solution was required to cope with collation ingestion

demands. The concept Fusion Data Holding (FDH) was created as a repository to hold the

raw data for further analysis. It soon become obvious to ACC management that cleansing

source data was contributing to processing delays.

The intention with the case study was to deliberately not cleanse any data and leave the

data in its raw state. Any data cleansing would be done by the various Solr tokenizers or the

indexers and each index record would contain a reference back to the original record. The

ACC management accepted the new proposed design, however there was much debate over

product and technology selection within ACC’s analysts. The ‘Schema-Last’ Approach

was a novel strategy and part of the case study was to select the appropriate technology

and product set. If no product could support the approach then a bespoke development of

a product would be required. However, the intention is to minimize any bespoke devel-

opment and that the case study would form the basis for a production system that would

support the Fusion Data Holding.

1The figure summarizes the total volume of data received (in orange) against the volume of data processed
(in purple)

165

166 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

2009 2010 2010 2011 2012
0

20

40

60

Year

D
at

a
So

ur
ce

s
Pr

oc
es

se
d

Received
Processed

Figure 9.1: Backlog demand: 2009 - 2011

9.1. FUSION DATA HOLDING 167

9.1 Fusion Data Holding

The Fusion Data Holding or FDH is a single repository created at the ACC to house the

‘Big Data’ repository. There are a number of mandatory requirements that must be met for

any design to succeed, which are:

1. Data must not be modified.

2. If the data was ordered - then the order could matter and must be retained.

3. The provenance of data is important and must be maintained and not lost through the

data life-cycle.

4. The data must be able to be annotated which also must not be lost.

5. Data must be extracted in bulk quickly and efficiently.

Prior to a ‘Big Data’ solution this research will describe the four iterations to attempt to

resolve the problem. Each design progressed through a number of iterations and each

significant change was indicated by a assigned name for each system developed by the

ACC (see Figure 9.2):

1. Aries was the original already in use and largely developed by the analysts.

2. The Shiloh project was an attempt to develop a big data repository utilizing triple

store technologies.

3. The Eland project was the iteration which built upon a columnar data base.

4. The Minerva project the final iteration that built upon the Eland project.

9.2 The Architecture

It is not clear yet how an optimal architecture of an analytical system should be to deal

with historic data and with real-time data at the same time. An interesting proposal is the

Lambda architecture of Nathan Marz (Marz and Warren, 2015). The Lambda architecture

168 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

solves the problem of computing arbitrary functions on arbitrary data in real-time by de-

composing the problem into three layers: the batch layer, the serving layer, and the speed

layer. As described by Nathan Marz:

‘All data entering the system is dispatched to both the batch layer and the speed layer

for processing.

1. The batch layer has two functions:

(a) managing the master dataset (an immutable, append-only set of raw data), and

(b) to pre-compute the batch views.

2. The serving layer indexes the batch views so that they can be queried in low-latency,

ad-hoc way.

3. The speed layer compensates for the high latency of updates to the serving layer and

deals with recent data only.

4. Any incoming query can be answered by merging results from batch views and real-

time views. (Marz and Warren, 2015)’

It combines in the same way as the Hadoop system for the batch layer, and Indexes and

Big Data system for the speed layer. The properties of the system are: robust and fault

tolerant, scalable, general, extensible, allows ad-hock queries, minimal maintenance, and

debuggable. ‘Schema-Last’ model has been using multiple technologies as foreshadowed

in Chapter 1.

There was no clear architecture or obvious product suite that would support the Fusion

Data Holding. The initial size of the Fusion Data Holding was unknown.

It is also important that any reports or statistical analysis of such large datasets are not

affected by the elimination of data cleansing and as Bradley Efron (Efron, 2010) explains

in his book about Large Scale Inference, it is easy to go wrong with huge data sets and

thousands of questions to answer at once.

The solution would also need to support the following operations:

9.3. ‘SCHEMA-LAST’ APPROACH REFERENCE IMPLEMENTATION 169

• Distributed mining. Many data mining techniques are not trivial to parallelize. To

have distributed versions of some methods, a lot of research is needed with practical

and theoretical analysis to provide new methods.

• Time evolving data. Data may be evolving over time, so it is important that the ‘Big

Data’ mining techniques should be able to adapt and in some cases to detect change.

For example, the data streaming is imperative to support data mining techniques.

• Compression: Dealing with ‘Big Data’, the quantity of space needed to store data is

relevant.

• Sampling: Can be applied if a representative sample can found. This will reduce

space required to store data in many orders of magnitude. However, data will be lost

if this technique is applied.

The architecture would be required to support the formulation of Core-sets which are small

sets that approximate the original data for a given problem. Using merge/map-reduce the

small sets can then be used for the development of the following (Fan and Bifet, 2012):

• Early warning: develop fast response in time of crisis, detecting anomalies in the

usage of data.

• Real-time awareness: design programs and policies with a more fine-grained repre-

sentation of reality.

• Real-time feedback: check what policies and programs fail, monitoring it in real

time, and using this feedback to make the needed change.

9.3 ‘Schema-Last’ Approach Reference Implementation

An excellent example of a SPARQL implementation is the Apache Jena framework. The

Apache Jena framework was originally developed by Hewlett Packard in their Bristol lab-

oratories back in 2010. Since then, the Apache Jena is now a top-level product as of April

2012 after leaving incubation status. The framework contains a SPARQL parser (Jena

170 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

Aries

Shiloh

Eland

Minera

Figure 9.2: System evolution

ARQ) which transforms the SPARQL query into one or more triple patterns see Table 9.6.

This provides the abstraction layer between the logical structure represented by the triplet

and the physical storage implementation. Jena is not the only library that provides this

functionality, Aduna’s Sesame library openrdf also provides an abstraction layer between

the physical and logical and supports numerous triple storage implementations. Another

example is the Redland librdf library which also provides the same capability as Apache

Jena and Aduna’s Sesame frameworks.

W3C has also defined a REST style protocol to communicate to SPARQL implementa-

tions (W3C, 2008b). All three libraries support the W3C SPARQL protocol specification.

9.4 Evaluation of Existing Implementations

The comparisons of the existing implementations are based on the Lehigh University

Benchmark (LUBM) software tools (Schmidt et al., 2009). The tests were performed on

Sun/Oracle SPARC machine with 128GB and eight 2.2GHz processors. The operating sys-

tem is Solaris 11 running a Postgres 9.2 database. The Oracle version was 11.2G with

the Spatial/RDF option activated. The Sesame version from Aduna was 2.7.8 which uti-

lized the Apache Tomcat 7 servlet engine. All the below implementations utilized Aduna’s

9.4. EVALUATION OF EXISTING IMPLEMENTATIONS 171

Sesame as the RDF front end and provider. The Oracle Sail was not compatible with this

particular version of Sesame and some modifications were required for the tested Oracle

implementation to succeed.

Two main requirements had to be met by a suitable candidate for a Big Data repository.

The first requirement was that the RDF triples could be loaded quickly and the memory

footprint was small (less than 250 megabytes). The second requirement was that the entire

triple store could be extracted or unloaded quickly and again with a small memory footprint

(less than 250 megabytes).

0 50 100 150 200 250

0

20

40

60

Time (mins)

Tr
ip

le
s

L
oa

de
d

(1
00

0s
)

(Systab) Bigdata
(Sesame) Postgres

(Oracle) Spatial
(Sesame) File

Figure 9.3: Comparison of triple store implementations (Load)

All tested implementations were able to load the RDF triplets except for the Oracle

implementation which failed after only 90 minutes on both the load and extraction runs.

During the Oracle extraction test, the Oracle’s Performance Monitor reported an unusually

high number of locks and contention on several tables that contained the triplets and this

may have caused the failure. Overall, all implementations were unable to extract triplets

172 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

0 50 100 150 200 250

0

10

20

30

40

Time (mins)

Tr
ip

le
s

R
et

ri
ev

al
(1

00
0s

)

(Systap) Bigdata
(Sesame) Postgres

(Oracle) Spatial
(Sesame) file

Figure 9.4: Comparison of triple store implementations (Retrieval)

without incurring a non-trivial memory leak. The overall performance of the various im-

plementations declined over time.

The SPARQL property path expression support was also tested and the results are de-

scribed in Figure 5.8. The only implementation that showed any promise was the Sesame

Postgres implementation mainly through the Systap ‘Big Data’ sail. The documentation

from both Systap’s Bigdata and Sesame’s native file storage did indicate that there is prop-

erty path support within their implementation but both reported a syntax error when the

property path clause was specified within the SPARQL select expression.

9.5. SUMMARY OF ‘SCHEMA-LAST’ APPROACH IMPLEMENTATIONS 173

0 50 100 150 200 250

0

100

200

300

Time (mins)

M
em

or
y

Fo
ot

pr
in

t(
M

eg
ab

yt
es

)

(Sesame) Postgres
(Systap) Bigdata
(Oracle) Spatial

(Sesame) file

Figure 9.5: Memory footprint on retrieval

9.5 Summary of ‘Schema-Last’ Approach Implementa-

tions

The triple stores are new and this type of technology is not yet main stream. However, com-

panies such as Oracle are just starting the development and implementation of triple stores.

In Oracle’s case they have two triple store implementations, where one utilizes relational

structures to store the triplet, the other utilizes a key/value pair database. One aspect of

triplets is that eight notional indexes are required to effectively support the SPARQL query

language (see Figure 9.6).

The adoption of triple store technology has been slow, most data base vendors are either

reluctant or slow to build triple store products. Palantir has rejected the triple store as a

storage mechanism and is unlikely to consider triple stores at least in the near future. This

is best summarized by Ian Davis in that he states:

174 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

Subject Predicate Object Description

Any Any Retrieve all the triplets for a given
subject.

Any Retrieve all the triplets for a given
object.

Any # Any Retrieve all the triplets for a given
predicate.

Any Any # Retrieve all triplets for a given
object.

Any # # Return all subjects for a specific
object and predicate combination.

Any # Return all the predicates for a given
subject and object combination.

Any Any Any Return all the triplets contained
with in a graph.

Determine if a specific triple
pattern exists within a graph.

Figure 9.6: Basic retrieval patterns

“One often overlooked advantage that RDF offers is its deceptively simple data

model. This data model trivializes merging of data from multiple sources and

does it in such a way that data about the same things gets collated and de-

duplicated. In my opinion this is the most important benefit of using RDF over

other open data formats.

Paradoxically this excellent feature is also a significant factor in the slow adop-

tion of RDF. The reason is that RDF is a general solution to the problem of

merging disparate types and sources of data. If you don’t have that problem

then RDF will always look inefficient, verbose and obtuse to you. Even if you

are merging data today you’re most likely only doing it from a few known

sources and it’ll be easier to write some custom code to do it for you.

I’ve heard many other arguments for the slow adoption of RDF over the years

ranging from perceived deficiencies in the RDF model through obtuse XML

formats and all the way up to techies being blamed for being bad at explaining

9.6. RELATIONAL TABLE AND RECURSIVE STRUCTURES 175

RDF. I’ve been guilty of complaining long and hard about blank nodes and sta-

tus codes. In reality, none of these things have any impact on the rate adoption

of RDF because people won’t use it until they have the problem it solves.

This is a typical characteristic of technical paradigm shifts. No-one thought

they had the problem of not being able to speak to anyone they liked wherever

they were until the cellphone arrived and shifted expectations.

Right now, no-one realises they have the problem of not being able to merge

and combine data from thousands of different primary sources. Most people

aren’t thinking about it and those that do are facing an economic barrier, not a

technical one. We know a general technical solution exists but the benefit/cost

ratio needs to be high enough to warrant using a general solution over a custom

one and today the costs of integrating data at scale are too high for most even

given the massive benefits that could be possible (Davis, 2011).”

Oracle have embraced ‘Big Data’ technology and have introduced a triple store (RDF)

front-end as part of their NoSQL (Not Only SQL) technology. Oracle did have a triple

store implementation which was part of their geospatial Solution Option. Oracle recently

released a RDF triple store implementation utilizing a Berkley Database for storage.

There have been a number of attempts to utilize a HBase backed triple store (Khadilkar

et al., 2012). Another RDF/HBase implementation was at Stanford University in 2012

(Haque and Perkins, 2012). Both implementations take advantage of the wide column

nature of the HBase columnar implementation and there is no restriction to the number of

columns contained within an HBase table. The major problem is that all elements of the

triples must be described as a combination of rows and columns. The paper describes 5

layout types which are described in Table 9.1.

9.6 Relational Table and Recursive Structures

Translating SPARQL to SQL can generate complex SQL statements as described in the

paper by Eric Prud’hommeaux and Alexandre Bertails from W3C describing how this

could be achieved. In their paper the authors suggest using the SQL union and group

176 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

Layout Type Storage Schema

Simple 3 tables each indexed by subjects,
predicates and objects

Vertically Partitioned (VP) For every unique predicate, two
tables, each indexed by subjects
and objects

Indexed Six tables representing the six
possible combinations of a triple
namely, SPO, SOP, PSO, POS,
OSP and OPS

Hybrid Simple + VP layouts
Hash Hybrid layout with hash values for

nodes and a separate table
containing hash-to-node mappings

Table 9.1: Schema types

clauses but disregard the recursive select clause available in some SQL implementations.

Translated SPARQL queries largely rely on the SQL optimizer for any performance gains

and as Eric Prud’hommeaux and Alexandre Bertails state:

“...that such a translation may not benefit from the capabilities of the SQL

optimizer (Prudhommeaux and Bertails, 2010).”

This was also confirmed by IBM Research which developed a strategy to store and retrieve

triplets utilizing a DB2 back-end:

“SPARQL queries, as we illustrate in this paper. Such queries often have

deep, nested sub-queries whose inter-relationships are lost when optimizations

are limited by the scope of single triple or individual conjunctive patterns. To

address such limitations, we introduce a hybrid two-step approach to query

optimization (Bornea et al., 2012).”

In addition, the SPARQL specification has been expanded to include a property path that

usually requires a form of recursion to implement. Usually relational databases are not well

suited to store graph structures. This is largely due to the inconsistent approach taken by the

9.6. RELATIONAL TABLE AND RECURSIVE STRUCTURES 177

MYSQL:

WITH RECURSIVE t (n) AS (
VALUES (1)

UNION ALL
SELECT n+1 FROM t WHERE n < 100)

SELECT sum (n) FROM t ;

ORACLE:

SELECT name , SUM(s a l a r y) " T o t a l _ S a l a r y " FROM (
SELECT CONNECT_BY_ROOT l a s t _ n a m e as name , S a l a r y

FROM employees
WHERE d e p a r t m e n t _ i d = 110

CONNECT BY PRIOR employee_ id = manager_ id)
GROUP BY name ;

Figure 9.7: SQL recursive queries on various platforms

various data base implementations to handle recursive queries. For example WITH RE-
CURSIVE is an extension provided by Postgres to allow the navigation of recursive table

structures. Oracle provides an extension to the SQL language which is the START-FROM
and CONNECT-BY that allows the navigation of both graph and hierarchical structures

(see figure 9.7). However there are no SPARQL to SQL translators which include both

Aduna’s Sesame and Apache Jena implementation which takes advantage of the SQL re-

cursive construct.

Similar recursive structures can also be navigated via complex relational joins if the

recursive query is not supported. Overall, relational databases are ineffective when pro-

cessing hierarchical or graph structures. This will be demonstrated by the results obtained

in Figure 9.25.

9.6.1 Aries

Aries was the initial attempt to resolve the ‘Big Data’ issue to store the data within a rela-

tional database in a highly structured manner. This was used by the Australian Department

of Human Services (DHS) with some success and that the same approach could be ap-

plied at the ACC. Aries took advantage of existing Oracle technologies which include SQL

Loader and SQLPLUS utilities. The major drawback with Aries was that ETL scripts for

each data source were required to be developed to load data into the Aries database. In

178 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

Investigation

Person

Member Of Address

Organisation

Contact Locality

Figure 9.8: Aries schema structure

addition, a team of twelve people were needed to develop the scripts to cleanse and coerce

the data into the Aries schema. The analysts then used SQ PLUS to interrogate the data

cleansed and loaded by the ‘upload’ team for any additional analysis.

On average the team could process no more than one to two datasets per day and any

data that could not fit neatly into the schema would be discarded. This approach also led

to an unacceptable back-log of unprocessed data sets.

9.6.2 Shiloh

Shiloh was the first implementation of the Fusion Data Holding and based on Aduna’s

Sesame triple store implementation. Sesame is cleverly designed to allow third party stor-

age to provide multiple storage implementations. Sesame provides a complete SPARQL

1.1 engine and SPARQL update and delete commands. In addition, Sesame provides a

comprehensive well documented interface to allow third party open-source and commercial

storage providers. The parsing and processing of SPARQL statements is largely performed

by the Sesame kernel. In addition, the kernel is responsible for all optimization in terms of

SPARQL performance. Many third party commercial vendors provide storage implemen-

tations that have been incorporated into the Sesame product suite which include: Oracle,

9.6. RELATIONAL TABLE AND RECURSIVE STRUCTURES 179

Systap and Virtuoso. Systap has developed an implementation called ‘Bigdata’ which is

an optimized triple store. Aduna developed a number of implementations based on open-

source technologies which include: an in memory volatile database, a file based triple store

and a Postgres and MySQL. Apache Solr provided the fuzzy index capability required by

Shiloh independent of the Sesam implementation.

Overall, the Shiloh was a failure largely due to the inability to extract data in bulk. The

Shiloh implementation utilized both Postgres database and Systap’s ‘Big Data’ SAIL. As

the data increased meant that the Solr index strategies required adjustment which required

a complete extraction all the sets contained within the stores. Both the Big Data and Aduna

SAIL implementations were unable to extract the data in bulk and therefore unable to

generate the data to build the Solr indexes.

9.6.3 Eland

Eland can be be viewed as a file system of tabular data. Each file or store contains the

content of the uploaded spreadsheet(s) or some tabular data. The store is composed of

bags, tags, sets, models and cells. The bag itself represents an instance of a single data

ingestion. Bags contain sets which can be viewed as rows in a spreadsheet or table. Each

set contains one or more cells. Each cell contains a single value and together form the set.

The cell also contains a sequence number which represents the cell’s position within the

set. The set also contains a sequence number which represents the set’s position with the

bag.

Sets can be returned in the order in which the rows were uploaded which has an over-

head or just extracted in order determined by Cassandra (this is the quickest way to extract

sets). Every set has an unique identifier or UUID. The UUID is an universal identifier in

that no two sets regardless of the repository and store will have the same set identifier.

The store itself is identified by a UUID which is also used to derive the keyspace name.

The base is used as the prefix followed by the UUID. The base is also used to identify

the Cassandra cluster. The entire keyspace name can be no longer than 42 bytes in length,

this created a challenge because graph URIs were were in excess of 42 bytes. In addition,

180 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

/ * *
* Conver t t h e C o n t e x t t o a v a l i d Keyspace Name
*
* @param c o n t e x t
* g e n e r a l l y t h e s t o r e name b u t c o u l d be a n y t h i n g
*
* @return t h e c o n v e r t e d c o n t e x t name
*
* @throws E x c e p t i o n
* thrown i f t h e c o n t e x t name i s i n v a l i d
*
* /

p r i v a t e S t r i n g toKeyspaceName (S t r i n g c o n t e x t) throws E x c e p t i o n {
P a t t e r n p a t t e r n = P a t t e r n

. compi l e (" [\ \ w] { 8 } − [\ \w] { 4 } − [\ \w] { 4 } − [\ \w] { 4 } − [\ \w]{12} ") ;
Matcher ma tche r = p a t t e r n . ma tche r (c o n t e x t . r e p l a c e A l l (" _ " , "−")) ;

ma tche r . r e s e t () ;
i f (ma tche r . f i n d ()) {

re turn l o c a t o r . g e t B a s e () + " _ "
+ S t r i n g U t i l s . r e p l a c e (ma tche r . g roup () , "−" , " _ ") ;

}

throw new E x c e p t i o n (" C o n t e x t must c o n t a i n a UID : ’ " + c o n t e x t + " ’ ") ;

}

Figure 9.9: Graph keyspace translation

Cassandra could only contain Alphanumeric and underscore characters. A URI name man-

gling algorithm was required to translate a graph URI to a valid Cassandra name-space (see

Equation 9.9).

Stores also may contain tags and meta-tags. Tags are user defined and there is no

restriction on how many tags a store may contain. Tags must have a name and value and the

name may only contain the following national characters. The tag value may contain any

value of any length including line-feeds. Meta-tags are generated by the Eland applications

and are always attached to a relevant bag.

9.6.3.1 Physical Structure

Eland takes advantage of Cassandra’s key features, which are:

• Cassandra can virtually have unlimited columns.

9.6. RELATIONAL TABLE AND RECURSIVE STRUCTURES 181

Tag Meta

Store Bag Set Cell

Map

Schema

Model

Figure 9.10: Eland logical structure

• The columns can retain an order that can be alphabetical or numerical (Eland stores

columns in numerical order for lists and alphabetical order for nodes).

• Columns can be indexed via a secondary index mechanism.

There are three column families which describe the structure of the Eland. These columns

families are called:

Link represents a link resource in RDF where the object is an RDF resource.

List represents an RDF list construct, however the object may be a resource or have

a literal value. The predicate must comply to the W3C RDF List standard.

Node represents a collection of literal values that belong to the one resource identi-

fied by the subject.

The first column family contains a subject, predicate and object where the object is the

key to the column family (see Figure 9.2). The subject and object are indexed but unlike

the object are not unique (see Figure 9.11). This represents a triple in RDF.

182 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

Column Name Key Indexed Description

Object The triple’s object
Predicate The triple’s predicate
Subject The triple’s subject

Figure 9.11: The Link column family

Column Name Key Indexed Description

Object The triple’s object
Predicate The triple’s predicate
Subject The triple’s subject

Figure 9.12: The List column family

Column Name Key Indexed Description

Object The triple’s object
Predicate The triple’s predicate
Subject The triple’s subject

Figure 9.13: The Node column family

9.6. RELATIONAL TABLE AND RECURSIVE STRUCTURES 183

Column Family Description Triple Support

LINK The LINK column family is used to establish connections between the
link and nodes or links to other links.

OSP,SPO,POS,SPO

LIST The LIST column family is used to model RDF LINK structures.
These link structures can contain up to 2 billion links.

SPO

NODE The NODE column family is used to model an RDF node. An RDF
node can only contain literal values. During the creation of the NODE
column family the API allows the creation of one or more secondary
indexes to identify columns that can be searched.

SPO

Table 9.2: Eland’s keyspace triple support

The second family is used to capture ordered RDF list structures. Unlike the first

column family, wide columns (see Figure 9.14) are used to represent list entries. This

permits entries to be returned in list order. The RDF specification represents a list by an

underscore ‘-’ character followed by a number for the final part of the uri. Therefore the

predicate contains the position of an object within a list for a specific subject (see Figure

9.12). The column family takes advantage of Cassandra’s wide column capability (a list

may only contain 2 billion entries). In the unlikely event this is insufficient there is no

restriction placed upon the number of bags that can be contained within a store. Therefore,

each item within a list is represented by a column keyed by the predicate. The object can

be a link (uri) or a literal value. In the case where the object is a link then this uri can be

used to identify a node or a link contained within the store.

9.6.4 Physical Artefacts within the Set Store

The third family is used to capture ordered RDF literal values. The subject is the owner of

the resources and the column name is the predicate name (see Figure 9.13).

9.6.4.1 Models and Indexes

The model and predicates are used to create the Solr index entries. Each model will result

in a separate Solr index. Therefore, if the store has three models then there will be three

184 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

Column

Row

Name/Value

Figure 9.14: Wide Column Structure

List (b)

Node (c)

ObjectSubject

Link (a)

Figure 9.15: Eland structures

9.6. RELATIONAL TABLE AND RECURSIVE STRUCTURES 185

Figure 9.16: Eland console

associated Solr indexes created. There are no restrictions on how many models can be

contained within a single store. It is permissible for a store to contain no models.

The schema that represents a set field entry must comply to the Solr schema. Therefore,

for the field to be indexed there must be an entry contained in the Solr schema. At any stage

an index may be dropped or modified. Solr does not need to be the only indexer.

Two applications, a fat and thin client (see Figure 9.16 and 9.17)2 would allow an

Eland user to create, modify and delete Schema definitions. The stores application would

also create, update, append data to stores or bags. Both applications had limited triage

capability. In general the data would be required to be represented in comma separated
format.

2Note: these figures have been redacted.

186 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

Figure 9.17: Eland thin client modeller

9.7 The Minerva Project

The poor performance of the Aduna Sesame product led to the initiation of the Minerva

project which was an attempt to improve upon existing implementations specifically tar-

geting the RDF list ingestion and extraction using the SPARQL property path extension.

Taking the experience from the previous tests, this series of implementations was designed

to reach the specified memory and storage footprints. This implementation was developed

at the ACC as a proof of concept to determine if the triple store supported by the DataStax

Cassandra columnar database was feasible The Aduna Sesame product was discarded in

favour of Apache Jena which provided property path support. Cassandra was chosen as the

back-end database because of its ability to distribute the work load amongst multiple nodes

and its general availability on most platforms.

Cassandra consists of the following key components (Datastax, 2014):

• Cluster: a container for one or more keyspaces. A Cassandra instance may contain

only one cluster, however the cluster may be distributed across one or more comput-

ers.

9.7. THE MINERVA PROJECT 187

• Keyspaces: a container for column families. A keyspace is analogous to a schema in

a relational database.

• Column families: analogous to a table in a relational database which may contain an

unlimited number of rows and up to four billion columns. Each row within a column

family must have a single unique key to identify the row.

• Columns: a column is name-value pair. The name can contain 64 kilobytes of data

and there is no real limitation on the size of the value.

Cassandra has the unique feature where the columns are stored in a nominated order (al-

phabetic, numeric, date or self-defined). Cassandra also has the concept of a super column

which is a column that may contain any number of sub-columns. Support for alternative

access to data is provided through secondary indexes. There is no restriction on the num-

ber of secondary indexes a column family may contain, however it is recommended that

the secondary indexes are of low cardinality.

Keyspaces were used to group triplets into graphs. The Jena ARQ parser provided

the graph node and this was used to determine the Cassandra keyspace that contained the

triplets. There is no documented limit to the number of keyspaces allowed within a Cassan-

dra instance. HBase shares many of the same attributes with Cassandra except that there is

no support for keyspaces.

9.7.1 Storage and Processing Strategies

The final design determined there were three possible storage and processing strategies

which are:

• Strategy 1 [s1] : A column family for each predicate within a graph. The column

family would comprise two columns which contain both the subject and object re-

spectively. Secondary indexes would be used to select particular rows if only one

subject or object is known. There is an assumption that there will only be a limited

number of predicates within a graph. An MD-5 hash key of both the subject and

predicate would be the key to the row. Therefore, a total of five column families are

required to store the triplets which are shown in Figure 5.20.

188 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

• Strategy 2 [s2] : This strategy comprised three column families which are SPO (Sub-

ject, Predicate, Object), OSP (Object, Predicate, Subject) and PSO (Predicate, Sub-

ject, Object) to store a triplet’s resources. The PSO column family takes advantage of

Cassandra’s capability to store any number of columns within a row. The MD-5 hash

was dispensed with in favour of the target artefact value contained within the triplet.

The SPO column family would be the subject, the OPS column family would be both

the object and the predicate for the PSO column family. There was an exception for

the OPS column family because an MD-5 hash value was used as the key if the object

represented a literal. There were no secondary indexes used in this implementation

(see Figure 9.19).

• Strategy 3 [s3] : A column family to contain all the literal values for a specific subject

identified by the predicate (Subject, Predicate, Literal). Each row within this column

family is referred to as a node. There are two additional column families for every

predicate within the graph and these column families are in the form of SPO (Sub-

ject, Predicate, Object) and OSP (Object, Predicate, Subject). For the SPO column

families if the object is a literal value then a placeholder - the asterisk character - is

used to indicate that the value is stored within a node column family. Otherwise, the

subject and object resources are rows within SPO and OPS column families where

the predicate value determines the column family name (see 9.20).

9.7.2 Load Performance

All tests were performed on the same hardware as the previous evaluations but were us-

ing the latest version of Cassandra which at the time was 2.0.9. The Thrift protocol was

used to communicate to Cassandra via an Apache Hector proxy. The load figures clearly

demonstrate that the second strategy [s2] clearly outperformed the third strategy [s3] which

outperformed the first strategy [s1] (see Figure 9.21). The LUBM test contained approx-

imately 28 predicate uri specifications which meant there was an additional 24 column

families and 56 secondary indexes required to support s1 over s2. s3 also required the same

24 additional column families but did not require the secondary index support.

9.7. THE MINERVA PROJECT 189

S+O S O

n1 n2 n3

S+O S O

n4 n5 n6

S+O S O

n7 n8 n9

S+O S O

n10 n11 n12

S+O S O

Column Family rdf:next [SO]

Column Family rdf:first [SO]

Column Family ex:artist [SO]

Column Family ex:year [SO]

Column Family ex:song [SO]

Row Key

Figure 9.18: Strategy 1: Column family structure

The s1 ingestion test was redone without the secondary indexes and subsequently the

performance improved dramatically. This confirmed it was secondary index construction

that caused the performance degradation, however without secondary indexes this makes

s1 unusable.

9.7.3 Extraction Performance

All strategies could support the nine possible triplet search patterns (see Figure 9.6). For s1,

if the predicate is unknown and a subject or object is specified then all column families have

to be searched for any matching triplets. For s2, the presence of the PSO column family

that was keyed on the predicate removed the need to search multiple column families. s3

190 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

S P O

n1 n2 n3

artist S O

n21 n22 n33

year S O

n31 n32 n43

song S O

Column Family [SPO]

Column Families [PSO+POS]

Column Families [PSO+POS]

Column Families [PSO+POS]

Row Key

Figure 9.19: Strategy 2: Column family structure

could utilize the column family name which happened to be the predicate uri to efficiently

traverse the RDF list structure (see Figure 9.22). There were no detectable memory leaks

with either the s1, s2 or s3 implementations during both the ingestion and extraction tests

(see Figure 9.23).

9.7.4 Property Path Support

The unbounded property path expression’s performance was problematic for both s1, s2

and not so with s3 as show in Figure 9.24 where elt is a path element to navigate to and

the number in braces is the degree of separation. To improve performance of s2 the link

triplets involved in RDF list structures were placed in a separate column family with two

rows keyed by the rdf:first and rdf:last. Each link is assigned an ascending number which

is used as the column identifier. This meant that triplets can only ever be appended to an

RDF list, therefore if insertions are required anywhere within the list structure other than

at the end then the entire list would have to be reconstructed.

9.7. THE MINERVA PROJECT 191

S S O

n1 n2 n3

O S O

n4 n5 n6

S S O

n7 n8 n9

O S O

n10 n11 n12

S S O

n21 n22 n23

S artist song year

Column Family rdf:next [SPO]

Column Family rdf:first [0PS]

Column Family artist [SP*]

Column Family year [SP*]

Column Family song [SP*]

Column Family SPL

Row Key

Figure 9.20: Strategy 3: Column family structure

192 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

0 50 100 150 200 250

60

80

100

120

Time (mins)

Tr
ip

le
s

L
oa

de
d

(1
00

0s
)

Strategy 1
Strategy 2
Strategy 3

Figure 9.21: Minerva - Load performance

9.7.5 Implementation Acceptance

The decision was made to deploy s3 over s1 and s2. Utilizing s3, tabular data in excess of

60 million rows was loaded in approximately 5 hours and extracted in 6 hours.

The initial reaction to triple store implementation has been positive amongst the test

audience. However it took some time to train the users to familiarize themselves with the

SPARQL query language syntax and how best to use the property path expression to query

directed graph structures.

9.7.6 The Bulk Matcher

The bulk matcher was a tool developed at the ACC to bulk search the Big Data repository.

This tool proved to be a great success amongst the analysts and other Australian intelligence

agencies which would submit their own lists to the bulk matcher. There are approximately

three bulk match requests per week which could contain any number of names. Other

Australian government agencies have expressed interest in developing similar capability.

9.7. THE MINERVA PROJECT 193

0 50 100 150 200 250
0

20

40

60

80

100

Time (mins)

Tr
ip

le
s

L
oa

de
d

(1
00

0s
)

Strategy 1
Strategy 2
Strategy 3

Figure 9.22: Minerva - Extraction performance

0 50 100 150 200 250

220

230

240

250

Time (mins)

M
em

or
y

Fo
ot

pr
in

t(
M

eg
ab

yt
es

)

Strategy 1
Strategy 2
Strategy 3

Figure 9.23: Minerva - Memory footprint on extraction

194 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

Property Path elt* elt{,5} elt{,10}
s1 " " "

s2 " " "

s3 " " "

Figure 9.24: Minerva - Tested property path expressions

As an example, over the last month (September 2014) there have been over 50 bulk match

requests.

9.8 Other Implementations

The CORES (Heery and Johnston, 2005) meta-data schema registry is designed to enable

users to discover and navigate meta-data element sets. The paper reflects on some of the

experiences of implementing the registry, and examines some of the issues of promoting

such services in the context of a “partially Semantic Web” where meta-data applications are

evolving and many have not yet adopted the RDF model. The CORES project has explored

the potential for supporting the creation and reuse of meta-data schema definitions using

Semantic Web technology.

The Optique project (Pinkel, 2013) is an attempt to join the Semantic Web at devel-

oping an end-to-end system for semantic data access to ‘Big Data’ in industries such as

Statoil ASA and Siemens AG. The first version of the Optique system was customized for

the Norwegian Petroleum Directorate’s Fact Pages, a publicly available dataset relevant for

engineers at Statoil ASA. The system provides different options, including visual aids to

formulate queries over ontologies and to display query answers. Optique offers installation

wizards that allow the analyst to extract ontologies from relational schemas, extract and de-

fine mappings, connecting ontologies and schemas, and align and approximate ontologies.

Moreover, the system offers highly optimized techniques for query answering utilizing the

SPARQL language and OWL ontologies.

9.9. SUMMARY 195

50%

15%

10%5%5%

15%

Collection
Planning
Requirements
Dissemination
Analysis
Processing

15%

20%
10%

5%

20% 30%

Collection
Planning
Requirements
Dissemination
Analysis
Processing

Figure 9.25: Comparison between the ‘Schema-First’ and ‘Schema-Last’ Approach

9.9 Summary

The success of the ‘Schema-Last’ Approach within the ACC enabled the organization to

quickly collate and process data received from external and internal providers. The dra-

matic reduction in time taken to ingest data allowed analysts to examine and process data

and not be required to cleanse and transform data (see Figure 9.25). The usage of Apache

Pig and Map reduction enabled analysts to generate criminal and test models that were not

possible with the ARIES system. The analysts now had at their disposal a number of tools

that were previously unavailable to them.

The use of a triple-store to capture and store the data was also successful. The imple-

mentation - Eland (which is still in production and soon to be replaced with Minerva) -

allowed the users to store meta-tags and relationships within the stores as RDF triplets.

Palatir was adopted as the intelligence recording tool by the ACC. Eland was integrated

into Palantir where a semantic representation could be captured within the store and ap-

plied to every set contained within the store. Palantir would use that semantic mapping to

represent as PXML which is a Palantir XML representational language. A Palatir plug-in

(the search assistant) would enable analysts to search the Eland stores. A screen shot of

the search assistant is shown in Figure 9.26 It was not unusual for analysts to begin an

investigation to search for any record of a person or entity within the Fusion Data Holding.

Overall, Eland and Minerva proved to be a great success amongst analysts within the

ACC and an example to other intelligence agencies on how to collect and process data as

part of the Intelligence Life-Cycle.

196 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

Figure 9.26: The Palantir Search Assistant

The backlog that caused the initial concern by ACC management was brought under

control. Eland was introduced around July 2012 and made an immediate impact with the

elimination of the data source processing backlog (see Figure 9.27). Every data source

was indexed using both Apache Solr and and Informatica’s Identity Resolution product.

The analysts were then able to search the Fusion Data Holding and generate core-sets for

further data analysis.

The incorporation of the ‘Schema-Last’ addresses the problem depicted in Figure 9.1

which utilized the pre-existing ‘Schema-First’ Approach. Furthermore, the ACC has been

able to reduce the staff required to clean data.

9.9. SUMMARY 197

2010 2011 2012 2014

0

200

400

600

800

1,000

Year

D
at

a
So

ur
ce

s

Received
Processed

Figure 9.27: Data source processing summary: 2009 - 2014

198 CHAPTER 9. THE ‘SCHEMA-LAST’ APPROACH: A CASE STUDY

Chapter 10

Conclusion and Further Work

Most of the questions for research have been investigated. The proposed new ‘Schema-

Last’ Approach demonstrates a strong value add to the analysis of ‘Big Data’ especially

within the Intelligence Life-Cycle.

The ACC now has an improved tool to address the eclectic nature of the data sent to

them. The ‘Schema-Last’ Approach can be used to define index strategies, provide the

map in map reduction and the foundation for data mining and analytical processing. The

formal definition of the schema syntax allows for the interchange of models and meta-data

amongst organizations, institutions and available to the general community. Overall, the

‘Schema-Last’ Approach has provided the platform to fuse data into a consolidated view

and to resolve issues associated with variability and variety of data when obtained from

multiple sources.

There were issues pertaining to the amount of data returned from any search of the

fusion data holding. Common name searches could yield thousands of results and it was

difficult for analysts to process these large result sets. The case study presented in the

previous chapter demonstrated that ‘Big Data’ and semantic technologies can be success-

fully incorporated into the Intelligence Life-Cycle and because the Intelligence Life-Cycle

shares many characteristics with the CRIPS-DM framework then this can be applied to

other data mining problems. Furthermore, the ability to effectively represent tabular data

within RDF structures enables data mining tools that utilize map-reduce algorithms to take

advantage of data stored that way.

199

200 CHAPTER 10. CONCLUSION AND FURTHER WORK

The general success of the Eland implementation has demonstrated that it is possible

to store RDF list structures in a columnar data base. Both Eland and Minerva utilized

the Cassandra as a back-end storage mechanism and it was found to be suitable to store

billions of triplets. The case study has clearly demonstrated that there is really no logical

restriction to the amount of data that can be held in a columnar data base. Furthermore,

having separate indexes for the RDF object was an effective strategy to allow analysts to

search the ‘Big Data’ repository.

The acceptance of the ‘Schema-Last’ Approach has had a profound effect on the ap-

proach taken by the ACC with reference to the Intelligence Life-Cycle. The collation and

process phase of the Intelligence Life-Cycle has now been largely automated with the intro-

duction of the Eland System. Eland was the second attempt at addressing the automation of

the collation and processing phases of the Intelligence Life-Cycle and the bulk matcher has

gone someway to automate the dissemination phase. There are some political and cultural

hurdles to overcome to have a fully automated dissemination process in that management

feel that dissemination of intelligence products requires a human to sign-off and confirm

before the product can be released.

Another observation was that the analysts did not append data utilizing the bag artifact

to existing stores. The analysts preferred to create a new store for a new feed or a new

snap-shot and use the folder structure to group store updates together.

Much debate was had amongst the analysts on how to replace or update an existing set

store. The general consensus was to never drop a store but drop the store’s index entries

and leave the store’s data in place.

Overall, data triage has proven to be an effective replacement over the existing ETL

technology stack. Furthermore, schema definitions are used throughout the Intelligence

Life-Cycle, not at the beginning as with the traditional ‘Schema-First’ approach.

The resulting ‘Schema-Last’ model has demonstrated enormous potential and interest

in the intelligence community and its validation against ACC’s data holdings and has been

received favorably amongst the analysts and senior management.

There is still a place for the ‘Schema-First’ approach in that if the data is transferred

from new to legacy systems and it is unlikely that this process will change then use ETL

and predefined schemas. If however, the data source can alter the data’s structure at any

10.1. RESPONSE TO THESIS QUESTIONS 201

Purpose Schema-First Schema-Last

Data provenance matters
Raw data must be retained
Data source never changes
the structure

Data is to be used for
analytical purposes

Data is a part of a business
process

Table 10.1: Schema-First/Schema-Last Comparison

time then ‘Schema-Last’approach should be taken (see Table 10.1). In addition, if the data

is part of a business processing system then the ‘Schema-First’ approach is a reasonable

option.

10.1 Response to Thesis Questions

The following sections are the responses to the thesis questions as specified in the intro-

ductory chapter.

10.1.1 Data Management and Stewardship

The following is the response to the thesis questions relating to data management and stew-

ardship:

• How best to ingest data received from external sources?

– The ‘Schema-Last’ Approach has been well received as an alternative to the

existing Extract Transform Load or ‘Schema-First’ Approach that was in place.

• How to process data in a timely manner?

202 CHAPTER 10. CONCLUSION AND FURTHER WORK

– The ‘Schema-Last’ Approach has proven to be an effective method to process

data without the need for data cleansing or development of complex data pro-

cessing scripts. The introduction of the triage process has effectively reduced

the time taken to collate and process data sets from months to minutes.

• How to retain data provenance to ensure that all data can be traced back to the original

source?

– The introduction of meta-data and the allocation of a set identifier ensures that

data provenance is retained.

• How to ensure that data is not changed or that the data meaning is not lost through

modification and transformation?

– The ‘Schema-Last’ Approach does not alter the raw data but transforms the

structure if required.

10.1.2 Data Quality

The following is the response to the thesis questions pertaining to data quality:

• How to deal with data sets with messy or noisy data values?

– The ‘Schema-Last’ Approach does not impute missing values or alter the orig-

inal data values to comply to a schema specification.

• How to deal with data sets with no identifiable primary key?

– It is not uncommon for data sets not to contain a primary key, therefore the set

identifier becomes the data source’s primary key. Meta-data is used to indicate

if the data source contains an external primary key.

• What if the time and man-power taken to clean and collate data exceeds the agency’s

processing capability?

10.1. RESPONSE TO THESIS QUESTIONS 203

– The case study clearly demonstrated that the manpower and the time taken to

clean and collate data was significantly reduced. This will allow the agency to

process any future data collation demands well into the future. The Minerva im-

plementation utilizing RDF and columnar technologies performed well beyond

expectations in its ability to collate and process data sources.

• How to deal with data values that have an ambiguous value or meaning?

– The data values and meaning are always respected. If the data value is ambigu-

ous then this ambiguity is managed by index strategies where multiple tokens

are generated to represent any data ambiguity.

10.1.3 Data Fusion

The following is the response to the thesis questions pertaining to data fusion:

• How to provide consistent fused view between the data sets contained within the

agency?

– The ‘Schema-Last’ models and domains are designed to provide a consistent

view between the data sets. In addition, these models can be changed or mul-

tiple models can be applied to the one data source. A formal nomenclature

is defined to represent ‘Schema-Last’ artefacts which include the models and

domains.

• How to fuse and analyze data on demand?

– The ‘Schema-Last’ has provided the platform to fuse and analyze data on de-

mand. The significant reduction in the time taken to collate and process data

has now meant that data can be analyzed in real time. In addition, the ‘Schema-

Last’ Approach supports the CRISP-DM framework and specifically targets the

collation and process phases of the Intelligence Life-Cycle.

204 CHAPTER 10. CONCLUSION AND FURTHER WORK

10.2 Problem Statement Response

The following is the response to the problem statement specified in the introductory chap-

ter:

1. Lack of an agreed ideal end state for the fusion capability.

• The ‘Schema-Last’ Approach provided the platform to support the collation and

processing phases of the Intelligence Life-Cycle. The reference implementation

proved to be a great success in eliminating the the need for data cleansing. The

data triage becomes the formal collation process within the ACC.

2. Lack of core data management function and data management regime around bulk

data holdings.

• The ‘Schema-Last’ Approach becomes the core management regime and de-

fines all the procedures related to the bulk data holdings.

3. Data entry functions are cumbersome and time consuming due to inflexible data

structures.

• The ‘Schema-Last’ Approach defined the flexible data structures required to

promote data ingestion and ultimately led to significant reduction in collation

and processing.

4. Search and discovery capabilities are highly ineffective; due to lack of connectedness

of data silos across different systems and networks. Early consideration of the key

problems in the agency identified an inability to answer “what do we know?” and as

a result, an Advance Search Capability was developed.

• This was the greatest challenge and as a result a number of index strategies were

defined to allow easy access to the data contained within the Fusion Bulk Data
holding.

5. Excessive time spent collating data rather than spending time analyzing the data.

10.2. PROBLEM STATEMENT RESPONSE 205

• There was a significant improvement in collating data which in turn led to

more time dedicated to analyzing data. Both Eland and Minerva demonstrated

that raw data could be collated and processed without dedicating significant

amounts of time and effort to cleanse or coerce data into a predefined schema.

The time is now spent describing and analyzing the data.

6. Identities are only able to be matched by converting data to a standard format across

all data sources. There is an inability to handle messy data where the data was either

poorly structured or contained a variety of data formats.

• Unlike the schema definitions used by the other approaches (‘Schema-First’

Approach) the Schema definitions allow for the collation and analysis of messy

data. The ‘Schema-Last’ Approach does not change or alter the raw data; mod-

els and domains can be used to describe the the messy data

7. Lack of a single collaborative platform for discovery, collation and analysis of data

holdings. The approach taken by many analysts is to use Analyst Notebook and

Microsoft Excel. They have been the primary analysis tools used by analysts. These

tools do not have access to all data sources available within the agency.

• The data fusion and matching chapters enable organizations to share schema

definitions. The schema definition can be expanded to include new fields which

can be transmitted along known data items.

8. Lack of sufficient basic analysis tools available enterprise wide including social net-

work analysis (SNA), temporal data mining and geospatial analysis.

• With the correct meta-data applied to the set data the addition of geospatial

coordinates provides the basis for any geospatial analysis to be performed on

the raw data. In addition, the index strategies as described in Chapter 6 sup-

port geospatial searching and Apache Solr. The indexing system within the

reference implementation a was able to perform geospatial radius and polygon

searches.

206 CHAPTER 10. CONCLUSION AND FURTHER WORK

9. Detection of previously unknown high risk entities is limited to data matching pro-

cesses due to a lack of time contiguous data sets.

• The ‘Schema-Last’ Approach did not directly address this problem statement,

however the dramatic reduction of time taken to process any new data sets in

turn led to an overall improvement with data matches.

10. Collected data that is not managed according to an agreed process and security

model.

• The ‘Schema-Last’ Approach became the agreed process to support the colla-

tion and processing phases of the Intelligence Life-Cycle.

11. Detection of previously unknown high risk entities is limited to data matching pro-

cess that cannot take advantage of the complete data sets.

• The approach taken does not remove or change data from the raw state.

12. Internal alerting capabilities where Persons Of Interest (POIs) can be monitored.

• POIs are able to monitored by the arrival of new data sets and feeds. A special

list of known criminals and their associates can be actively monitored with the

non-prescriptive schema definitions.

13. External alerting capabilities from partner agencies, will enable external agencies to

have the ability to monitor POIs and report the results back to the ACC.

• Schema definitions can be shared amongst agencies and can be used as a spec-

ification for data exchange. Unlike XML schema definitions, the model and

structures are based domains which is a range of a values rather than a primi-

tive data type.

14. Improve real-time access to data. This also includes the ability to Social Network

Analysis (SNA) to identify groups or cliques, identify network density and identify

possible POIs.

10.3. FURTHER WORK 207

• The semantic and match store are specifically designed for this purpose. The

combination of the store models, ontological structures, the links and match

results allow for the identification and analysis of graph structures. This will

allow the analysts to identify cliques, graph density and provide the platform

for Social Network Analysis.

15. Lack of capacity to develop advanced analytic tools. The NCTL (National Criminal

Target List) and the validation of the ACC’s TRAM (Threat Risk Assessment Model).

• The ‘Schema-Last’ Approach provides the capability and analytical platform to

develop other analytical tools and provides the platform for any future analysis.

Furthermore, the NCTL could be another set store within the repository.

10.3 Further Work

The research undertaken has adequately addressed the research question established for

this work. Also, the process at arriving at an implementation went through a number of im-

plementations and the work is still in progress. The match store (see Chapter 5.8) has not

been fully implemented. The premise is that the bulk matcher would ultimately produce

the potential matches and these matches would be recorded within the match store. Auto-

mated alert models can take advantage of the ‘Schema-Last’ models. Perhaps the greatest

concern amongst analysts was the large result set returned from searches. The results sets

could number in the many thousands and overwhelm the analyst. More research would be

required to determine the most appropriate approach to display large search required to the

user.

The three stores classifications, set, semantic and match, provide the foundation for

the ‘Schema-Last’ Approach. There may be other relationships that need to be captured

and this may require other store classifications.

The schema structure and definition was deliberately kept simple so that analysts at the

ACC with little training could successfully define and create set store models. If this is not

sufficient, models can be extended to include other attributes that may be used as input to

analytical processes.

208 CHAPTER 10. CONCLUSION AND FURTHER WORK

Finally, the application of the ‘Schema-Last’ Approach artefacts is not just limited to

index creation and data fusion, there may be other analytical processes that could take

advantage of these artefacts for other purposes. Any application that must process dirty

data should seriously consider the ‘Schema-Last’ Approach.

Bibliography

Aduna. Sesame user manual, 2013. URL http://www.openrdf.org/doc/sesame2/

users/ch01.html.

Mouhib Alnoukari and Asim El Sheikh. Knowledge discovery process models: From

traditional to agile modeling, 2012. URL http://www.irma-international.org/

viewtitle/58566/.

Amazon. Amazon redshift, 2014. URL http://aws.amazon.com/redshift/.

J.A Armstrong. The funding base for australian biological collections. Australian Biologist,

5:80–81, 1992.

Mark Bedworth and Jane O’Brien. The omnibus model: A new model of data fusion?,

2000. URL http://isif.org/fusion/proceedings/fusion99CD/C-075.pdf.

Tim Berners-Lee. Uri specification. w3c, 1991. URL http://www.w3.org/Addressing/

URL/uri-spec.html.

Anuradha Bhatia and Shefali Patil. Column oriented dbms an approach, 10 2011. URL

http://www.ijcscn.com/Documents/Volumes/vol1issue2/ijcscn2011010203.

pdf.

Joachim Biskup. Lecture Notes in Computer Science. Springer-Verlag, 1987.

Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas, Patrick

Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. Building an efficient

rdf store over a relational database. Technical report, IBM Research, 2012. URL https:

//cs.uwaterloo.ca/~gweddell/cs848/papers/Bornea.pdf.

209

http://www.openrdf.org/doc/sesame2/users/ch01.html
http://www.openrdf.org/doc/sesame2/users/ch01.html
http://www.irma-international.org/viewtitle/58566/
http://www.irma-international.org/viewtitle/58566/
http://aws.amazon.com/redshift/
http://isif.org/fusion/proceedings/fusion99CD/C-075.pdf
http://www.w3.org/Addressing/URL/uri-spec.html
http://www.w3.org/Addressing/URL/uri-spec.html
http://www.ijcscn.com/Documents/Volumes/vol1issue2/ijcscn2011010203.pdf
http://www.ijcscn.com/Documents/Volumes/vol1issue2/ijcscn2011010203.pdf
https://cs.uwaterloo.ca/~gweddell/cs848/papers/Bornea.pdf
https://cs.uwaterloo.ca/~gweddell/cs848/papers/Bornea.pdf

210 BIBLIOGRAPHY

John Boyd. A discourse on winning and losing. Lecture, 1987.

Michael E. Bratman. Beliefs, Desires and Intentions. CSLI Publications, 1999.

N. Brierley, T. Tippetts, and P. Cawley. Data fusion for automated non-destructive inspec-

tion. Proceedings of the RSPA, 2014. URL http://rspa.royalsocietypublishing.

org/content/470/2167/20140167.abstract.

Federico Castanedo. A multi-agent architecture based on the bdi model for data fusion

in visual sensor networks. Journal of Intelligent & Robotic Systems, 62(3-4):299–328,

2011. ISSN 0921-0296. doi: 10.1007/s10846-010-9448-1. URL http://dx.doi.org/

10.1007/s10846-010-9448-1.

Fay Chang. Bigtable: A distributed storage system for structured data, September 2006.

URL http://static.googleusercontent.com/bigtable-osdi06.pdf.

Arthur D Chapman. Principles of Data Quality. Australian Biodiversity Information Ser-

vices, 2005.

Hsinchun Chen, Wingyan Chung, Jennifer Jie Xu, Gang Wang, Yi Qin, and Michael Chau.

Crime data mining: A general framework and some examples. IEEE, 37:50–56, 2004.

URL http://hdl.handle.net/10722/45461.

William W. Cohen. A comparison of string distance metrics for name-matching tasks,

2001. URL https://www.cs.cmu.edu/~pradeepr/papers/ijcai03.pdf.

Australian Crime Commission. Australian crime commission fusion capability. 2012.

Kenneth Neil Cukier and Viktor Mayer-Schoenberger. The rise of big data - how it’s chang-

ing the way we think about the world, 2013. URL http://www.foreignaffairs.com/

articles/139104/.

Quick Darren and Kim-Kwang Raymond Choo. Data reduction and data mining framework

for digital forensic evidence: Storage, intelligence, review and archive, September 2014.

URL http://aic.gov.au/media_library/publications/tandi_pdf/tandi480.

pdf.

http://rspa.royalsocietypublishing.org/content/470/2167/20140167.abstract
http://rspa.royalsocietypublishing.org/content/470/2167/20140167.abstract
http://dx.doi.org/10.1007/s10846-010-9448-1
http://dx.doi.org/10.1007/s10846-010-9448-1
http://static.googleusercontent.com/bigtable-osdi06.pdf
http://hdl.handle.net/10722/45461
https://www.cs.cmu.edu/~pradeepr/papers/ijcai03.pdf
http://www.foreignaffairs.com/articles/139104/
http://www.foreignaffairs.com/articles/139104/
http://aic.gov.au/media_library/publications/tandi_pdf/tandi480.pdf
http://aic.gov.au/media_library/publications/tandi_pdf/tandi480.pdf

BIBLIOGRAPHY 211

Belur V Dasarathy. Sensor fusion potential exploitation innovative architectures and illus-

trative applications. Proceedings of the IEEE, 85:24–38, 1997.

Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and Data Cleaning:.

Wiley, 2003.

Datastax. Cassandra technical manual, August 2014. URL http://www.datastax.com/.

Ian Davis. The real challenge for rdf is yet to come, August 2011. URL http://blog.

iandavis.com/2011/08/18/the-real-challenge-for-rdf-is-yet-to-come/.

Edd Dumbill. What is big data?, January 2012. URL http://radar.oreilly.com/

2012/01/what-is-big-data.html.

Bradley Efron. Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing,

and Prediction. Cambridge University Press, 2010.

Timo Elliott. 7 definitions of big data you should know about,

July 2013. URL http://timoelliott.com/blog/2013/07/

7-definitions-of-big-data-you-should-know-about.html.

EMC. The digital universe in 2020: Big data, bigger digital shadows, and biggest

growth in the far east, December 2012. URL http://www.emc.com/leadership/

digital-universe/2012iview/executive-summary-a-universe-of.htm.

Wei Fan and Albert Bifet. Mining big data: Current status, and forecast to the future,

2012. URL http://www.kdd.org/sites/default/files/issues/14-2-2012-12/

V14-02-01-Fan.pdf.

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data mining to

knowledge discovery in databases. AI Magazine, 17, 1996.

John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger digital

shadow s, and biggest growth in the far east, December 2012. URL http://www.emc.

com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf.

http://www.datastax.com/
http://blog.iandavis.com/2011/08/18/the-real-challenge-for-rdf-is-yet-to-come/
http://blog.iandavis.com/2011/08/18/the-real-challenge-for-rdf-is-yet-to-come/
http://radar.oreilly.com/2012/01/what-is-big-data.html
http://radar.oreilly.com/2012/01/what-is-big-data.html
http://timoelliott.com/blog/2013/07/7-definitions-of-big-data-you-should-know-about.html
http://timoelliott.com/blog/2013/07/7-definitions-of-big-data-you-should-know-about.html
http://www.emc.com/leadership/digital-universe/2012iview/executive-summary-a-universe-of.htm
http://www.emc.com/leadership/digital-universe/2012iview/executive-summary-a-universe-of.htm
http://www.kdd.org/sites/default/files/issues/14-2-2012-12/V14-02-01-Fan.pdf
http://www.kdd.org/sites/default/files/issues/14-2-2012-12/V14-02-01-Fan.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf

212 BIBLIOGRAPHY

Lars Marius Garshol. Rdf triple stores - an overview, 9 2012. URL http://www.garshol.

priv.no/blog/231.html.

Gartner. What is big data, 2014. URL http://www.gartner.com/it-glossary/

big-data/.

Tom Gruber. What is an ontology, 1993. URL http://www-ksl.stanford.edu/kst/

what-is-an-ontology.html.

Philip J Guo, Sean Kandel, Joseph M Hellerstein, and Jeffrey Heer. Proactive wrangling:

Mixed-initiative end-user programming of data transformation scripts. In Proceedings

of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST

’11, pages 65–74, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0716-1. doi: 10.

1145/2047196.2047205. URL http://doi.acm.org/10.1145/2047196.2047205.

Albert Haque and Lynette Perkins. Distributed rdf triple store using hbase and hive, De-

cember 2012. URL http://web.stanford.edu/~akhaque/downloads/cs370.pdf.

Christopher Hayes. Parliamentary joint committee on law enforcement - inquiry

into the gathering and use of criminal intelligence., May 2013. URL http:

//www.aph.gov.au/~/media/wopapub/senate/committee/le_ctte/completed_

inquiries/2010-13/criminal_intelligence/report/report.ashx.

Rachel Heery and Pete Johnston. Metadata schema registries in the partially semantic

web: the cores experience, 2005. URL http://opus.bath.ac.uk/23575/1/102_

Paper29.pdf.

Scott Henry, Sherlynn Hoon, Meeky Hwang, Diane Lee, and Michael D. DeVore. En-

gineering trade study, extract, transform, load tools for data migration, 2005. URL

http://www.sys.virginia.edu/sieds05/proceedings/A101.pdf.

Oliver Higgins. The theory and practice of intelligence collection. The Federation Press,

2009.

Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Foundations of Semantic Web

Technologies. CRC Press, 2010.

http://www.garshol.priv.no/blog/231.html
http://www.garshol.priv.no/blog/231.html
http://www.gartner.com/it-glossary/big-data/
http://www.gartner.com/it-glossary/big-data/
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://doi.acm.org/10.1145/2047196.2047205
http://web.stanford.edu/~akhaque/downloads/cs370.pdf
http://www.aph.gov.au/~/media/wopapub/senate/committee/le_ctte/completed_inquiries/2010-13/criminal_intelligence/report/report.ashx
http://www.aph.gov.au/~/media/wopapub/senate/committee/le_ctte/completed_inquiries/2010-13/criminal_intelligence/report/report.ashx
http://www.aph.gov.au/~/media/wopapub/senate/committee/le_ctte/completed_inquiries/2010-13/criminal_intelligence/report/report.ashx
http://opus.bath.ac.uk/23575/1/102_Paper29.pdf
http://opus.bath.ac.uk/23575/1/102_Paper29.pdf
http://www.sys.virginia.edu/sieds05/proceedings/A101.pdf

BIBLIOGRAPHY 213

Informatica. Data fusion for cyber intelligence, 2014. URL http://www.informatica.

com/Images/02435_data-fusion-cyber-intelligence_eb_en-US.pdf.

ISO/IEC. Information technology – metadata registries (mdr, April 2012. URL http:

//metadata-standards.org/.

Vaibhav Khadilkar, Murat Kantarcioglu, Bhavani Thuraisingham, and Paolo Castagna.

Jena-hbase: A distributed, scalable and efficient rdf triple store. The University of Texas

at Dallas, 2012.

Daniel T. Larose. Discovering Knowledge in Data: An Introduction to Data Mining. John

Wiley & Sons, 2014.

Jimmy Lin and Dmitriy Ryaboy. Scaling big data mining infrastructure: The twitter ex-

perience. SIGKDD Explor. Newsl., 14(2):6–19, April 2013. ISSN 1931-0145. doi: 10.

1145/2481244.2481247. URL http://doi.acm.org/10.1145/2481244.2481247.

David S. Linthicum. Understanding the symbiosis of cloud computing, big

data, and mobile, March 2013. URL http://research.gigaom.com/2013/03/

understanding-the-symbiosis-of-cloud-computing-big-data-and-mobile/.

Steve Lohr. For big-data scientists, ’janitor work’ is key hurdle to insights. New York

Times, August 2014. URL http://www.nytimes.com/2014/08/18/technology/

for-big-data-scientists-hurdle-to-insights-is-janitor-work.html.

Apache Lucene. Welcome to apache lucene, 3 2015. URL http://lucene.apache.org/.

Nathan Marz and James Warren. Big Data: Principles and best practices of scalable

realtime data systems. Manning Publishing, 2015.

Vincent McBurney. 17 mistakes that etl designers make with very

large data, 2007. URL http://it.toolbox.com/blogs/infosphere.

http://it.toolbox.com/blogs/infosphere/17-mistakes-that-etl-designers-make-with-

very-large-data-19264.

http://www.informatica.com/Images/02435_data-fusion-cyber-intelligence_eb_en-US.pdf
http://www.informatica.com/Images/02435_data-fusion-cyber-intelligence_eb_en-US.pdf
http://metadata-standards.org/
http://metadata-standards.org/
http://doi.acm.org/10.1145/2481244.2481247
http://research.gigaom.com/2013/03/understanding-the-symbiosis-of-cloud-computing-big-data-and-mobile/
http://research.gigaom.com/2013/03/understanding-the-symbiosis-of-cloud-computing-big-data-and-mobile/
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
http://lucene.apache.org/
http://it.toolbox.com/blogs/infosphere

214 BIBLIOGRAPHY

Gery Menegaz. What is nosql, and why do you need it?, October 2012. URL http:

//www.zdnet.com/what-is-nosql-and-why-do-you-need-it-7000004989/.

Microsoft. Data cleansing, 2012. URL http://technet.microsoft.com/en-us/

library/gg524800.aspx.

Marie-Franice Moens. Automatic Indexing and Abstracting of Document Texts. Klumer

Academic Press, 2002.

Elkan C Monge, A. The field matching problem: Algorithms and applications. In Proceed-

ings of The Second International Conference on Knowledge Discovery and Data Mining,

1996.

Emily Namey, Greg Guest, Lucy Thairu, and Laura Johnson. Data reduction techniques

for large qualitative data sets, March 2007.

Thor Olavsrud, July 2014. URL http://www.cio.com/article/2449814/big-data/

data-scientists-frustrated-by-data-variety-find-hadoop-limiting.

html.

Christoph Pinkel. Optique 1.0: Semantic access to big data, 2013. URL

http://scholar.google.com.au/citations?view_op=view_citation&hl=

en&user=Jd7PlLEAAAAJ&citation_for_view=Jd7PlLEAAAAJ:zYLM7Y9cAGgC.

Fiona Swee-Lin Price. success with Asian names. Allen&Unwin, 2007.

Eric Prudhommeaux and Alexandre Bertails. A mapping of sparql onto conventional sql,

2010. URL http://www.w3.org/2008/07/MappingRules/StemMapping.

Neil Quarmby. Future work in strategic criminal intelligence. Strategic Thinking in Crimi-

nal Intelligence, pages 129–147, 2004.

Anand Rajaraman. Mining of Massive Datasets. 2014. URL http://infolab.

stanford.edu/~ullman/mmds/book.pdf.

Jerry Ratcliffe. Intelligence-Led Policing. Routledge, 2008.

http://www.zdnet.com/what-is-nosql-and-why-do-you-need-it-7000004989/
http://www.zdnet.com/what-is-nosql-and-why-do-you-need-it-7000004989/
http://technet.microsoft.com/en-us/library/gg524800.aspx
http://technet.microsoft.com/en-us/library/gg524800.aspx
http://www.cio.com/article/2449814/big-data/data-scientists-frustrated-by-data-variety-find-hadoop-limiting.html
http://www.cio.com/article/2449814/big-data/data-scientists-frustrated-by-data-variety-find-hadoop-limiting.html
http://www.cio.com/article/2449814/big-data/data-scientists-frustrated-by-data-variety-find-hadoop-limiting.html
http://scholar.google.com.au/citations?view_op=view_citation&hl=en&user=Jd7PlLEAAAAJ&citation_for_view=Jd7PlLEAAAAJ:zYLM7Y9cAGgC
http://scholar.google.com.au/citations?view_op=view_citation&hl=en&user=Jd7PlLEAAAAJ&citation_for_view=Jd7PlLEAAAAJ:zYLM7Y9cAGgC
http://www.w3.org/2008/07/MappingRules/StemMapping
http://infolab.stanford.edu/~ullman/mmds/book.pdf
http://infolab.stanford.edu/~ullman/mmds/book.pdf

BIBLIOGRAPHY 215

Eric S. Raymond. What is data munging?, 1996. URL http://eduunix.ccut.

edu.cn/index2/html/oracle/O'Reilly-Perl.For.Oracle.DBAs.eBook-LiB/

oracleperl-APP-D-SECT-1.html.

T.C. Redman. Data Quality: The Field Guide. Digital Press, 2001.

David Ruppert. Inconsistency of resampling algorithms for high-breakdown regression

estimators and a new algorithm. Journal of the American Statistical Association, 97:

148–149, 2002.

Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel. A sparql per-

formance benchmark. ICDE, pages 222–223, 2009.

Kumar Setty. What is big data and what does it have to do with audit. ISACA Journal, 3:1,

2013.

Alan Shugart. Hardrive: Cost of hard drive storage space, September 2012. URL http:

//ns1758.ca/winch/winchest.html.

David Smiley and Eric Pugh. Apache Solr 3 Enterprise Search Server. PACKT Publishing,

2011.

Shan Suthaharan. Big data classification: Problems and challenges in network intrusion

prediction with machine learning, 2012. URL http://www.sigmetrics.org/

sigmetrics2013/bigdataanalytics/abstracts2013/bdaw2013_submission_4.

pdf.

S. C. A Thomopoulos. Sensor integration and data fusion. Sensor Fusion II: Human and

Machine Strategies, 1198:179–191, 1989.

S. C. A Thomopoulos. Decision and evidence fusion in sensor integration. Advances in

Control and Dynamic Systems, 49:339–412, 1991.

Eric Tom. Mathematical models in decision analysis. Chicago Journal - Shea - The Society

of Healthcare Epidemiology of America, 18:65–69, 1997.

http://eduunix.ccut.edu.cn/index2/html/oracle/O'Reilly-Perl.For.Oracle.DBAs.eBook-LiB/oracleperl-APP-D-SECT-1.html
http://eduunix.ccut.edu.cn/index2/html/oracle/O'Reilly-Perl.For.Oracle.DBAs.eBook-LiB/oracleperl-APP-D-SECT-1.html
http://eduunix.ccut.edu.cn/index2/html/oracle/O'Reilly-Perl.For.Oracle.DBAs.eBook-LiB/oracleperl-APP-D-SECT-1.html
http://ns1758.ca/winch/winchest.html
http://ns1758.ca/winch/winchest.html
http://www.sigmetrics.org/sigmetrics2013/bigdataanalytics/abstracts2013/bdaw2013_submission_4.pdf
http://www.sigmetrics.org/sigmetrics2013/bigdataanalytics/abstracts2013/bdaw2013_submission_4.pdf
http://www.sigmetrics.org/sigmetrics2013/bigdataanalytics/abstracts2013/bdaw2013_submission_4.pdf

216 BIBLIOGRAPHY

Evangelos Triantaphyllou. Multi-Criteria Decision Making Methods: A Comparative

Study. Kluwer Academic Publishers, 2002.

US-Army. Human Intelligence Collector Operations. Number 2-22.3. Pentagon Library,

2006. URL http://books.google.com.au/books?id=c6mp5QHkJ8YC&pg=PT4&dq=

intelligence+source+reliability+a1&lr=&num=50&as_brr=3&cd=3&redir_

esc=y#v=onepage&q&f=false.

W3C. Testimonials for w3c’s semantic web recommendations - rdf and owl, 1 2004. URL

http://www.w3.org/2004/01/sws-testimonial.

W3C. Sparql query language for rdf, January 2008a. URL http://www.w3.org/TR/

rdf-sparql-query/.

W3C. Sparql protocol for rdf, January 2008b. URL http://www.w3.org/TR/

rdf-sparql-protocol/.

W3C. Sparql 1.1 property paths, 2010. URL http://www.w3.org/2009/sparql/docs/

property-paths/Overview.xml.

W3C. Owl 2 web ontology language structural specification and functional-style syntax,

December 2012. URL http://www.w3.org/TR/owl2-syntax/.

W3C. Resource description framework (rdf), 2 2014. URL http://www.w3.org/RDF/.

Qiang Yang and Xindong Wu. 10 challenging problems in data mining research. Interna-

tional Journal of Information Technology & Decision Making, 5:597–604, 2006. URL

http://cs.uvm.edu/~icdm/10Problems/10Problems-06.pdf.

Xingquan Zhu, Xindong Wu, and Qijun Chen. Eliminating class noise in large datasets,

2003. URL http://www.aaai.org/Papers/ICML/2003/ICML03-119.pdf.

http://books.google.com.au/books?id=c6mp5QHkJ8YC&pg=PT4&dq=intelligence+source+reliability+a1&lr=&num=50&as_brr=3&cd=3&redir_esc=y#v=onepage&q&f=false
http://books.google.com.au/books?id=c6mp5QHkJ8YC&pg=PT4&dq=intelligence+source+reliability+a1&lr=&num=50&as_brr=3&cd=3&redir_esc=y#v=onepage&q&f=false
http://books.google.com.au/books?id=c6mp5QHkJ8YC&pg=PT4&dq=intelligence+source+reliability+a1&lr=&num=50&as_brr=3&cd=3&redir_esc=y#v=onepage&q&f=false
http://www.w3.org/2004/01/sws-testimonial
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/2009/sparql/docs/property-paths/Overview.xml
http://www.w3.org/2009/sparql/docs/property-paths/Overview.xml
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/RDF/
http://cs.uvm.edu/~icdm/10Problems/10Problems-06.pdf
http://www.aaai.org/Papers/ICML/2003/ICML03-119.pdf

Appendix A

Supporting Material

A.1 Publications

Author(s) Title Conference Date

Neil Brittliff and Dharmendra Sharma The Schema Last Approach to Data Fusion AusDM 27/11/2014

Neil Brittliff and Dharmendra Sharma A Triple Store Implementation to support Tabular Data AusDM 27/11/2014

217

218 APPENDIX A. SUPPORTING MATERIAL

A.2 Letter of Appreciation

ACC HEADQUARTERS

44 Mort Street Canberra ACT 2601

GPO Box 1936 Canberra ACT 2601

Tel: (02) 6243 6613 | Fax: (02) 6243 6679 | Internet: www.crimecommission.gov.au

To Whom It May Concern,

Letter of Appreciation - Mr Neil Brittliff

The Australian Crime Commission (ACC) would like to thank Mr Neil Brittliff for his excellent
work on the Fusion Program. This program involved significant research and implementation
of our main analysis platform, including the development of ground-breaking algorithms for
problems confronted by our Intelligence Agency. Mr Briffliff’s work was instrumental for
collation, process, analysis and knowledge discovery from data received by the ACC.

Mr Brittliff’s efforts resulted in the introduction and successful implementation of Eland which
employs his ‘schema last’ computational model. This has meant the ACC has eliminated
the need to ‘cleanse’ data and has allowed analysts to upload and model data without the
need for specialist skills.

Mr Brittliff also developed advanced index strategies and mechanisms that have proven to
be invaluable. This has allowed analysts to quickly search and retrieve records from Fusion
Data Holdings.

Mr Brittliff also helped develop the ACC’s bulk matching capability which allows the ACC to
process large lists (of names, addresses, and so on) and match these with records held
within Fusion Data Holdings.

The Fusion capability and the ACC as a whole has greatly benefited from Mr Brittliff’s
research and implementation work. The Agency’s capability to deal with the wide variety of
data sets received has been significantly enhanced

Issues experienced by the ACC motivated Mr Briffliff’s research which became the topic for
his PhD. The ACC is delighted to commend the outcomes.

Yours sincerely

Dr Maria Milosavljevic
Chief Information Officer
Australian Crime Commission

Dr John Moss
National Manager, Intelligence
Australian Crime Commission

14 November, 2014

Appendix B

Media Release - ACC Fusion Capability

Paul Jevtovic APM

Executive Director, Operations

The Australian Crime Commission is Australia’s na-

tional criminal intelligence and investigative agency

with a focus solely on issues of serious and or-

ganised crime. A key hallmark of the Australian

Crime Commission is its Board, which comprises

the heads of 14 agencies from state, territory and

Commonwealth law enforcement, regulatory and na-

tional security and is the most powerful law enforce-

ment and national security body in the country. An-

other key hallmark of the ACC is its specialist Royal

Commission-style coercive powers and its ability to

conduct special investigations and special operations

where conventional law enforcement methods are

unable or unlikely to be effective. We are also in the

business of collecting and analysing criminal intelli-

gence and data, and where possible, sharing that resulting information. To truly have im-

pact against serious and organised crime, we must first discover and understand the national

and international picture of its networks, methodologies, and the full range of vulnerabil-

ities it exploits. We must then translate this into effective responses. To do this, we need

rich, contemporary, and comprehensive criminal intelligence. Building this intelligence

219

220 APPENDIX B. MEDIA RELEASE - ACC FUSION CAPABILITY

picture and identifying organised crime trends and weaknesses is the Crime Commission’s

core business. Much of the Commission’s intelligence is housed in our National Crimi-

nal Intelligence Fusion Capability, which brings together subject matter experts, analysts,

technology and big data to identify previously unknown criminal entities, criminal method-

ologies, and patterns of crime. For example our Fusion capability identifies the threats and

vulnerabilities through the use of data. It brings together, monitors and analyses data and

information from Customs, other law enforcement and Government agencies and industry

to build an intelligence picture of serious and organised crime in Australia.

Paul Jevtovic APM - September 2014

Appendix C

The Australian Criminal Intelligence
Model

ACIM

Phase
Description Collaboration activities

Plan,

Prioritize,

Direct

Establish the intelligence requirements, plan

intelligence activities and direct resources according to

priorities. The planning, prioritization and direction

phase, sets the stage for the Intelligence Cycle and

provides the foundation from which all Intelligence Cycle

activities are launched. Priorities are established when the

threat and risk levels have been determined which in turn

facilitates the planning and direction regarding the

deployment and utilization of resources. The direction

component can precede the planning where a requirement

for a specific product is made, such as a full report, or

tactical assessment to meet a particular business need.

Collaborative leadership.

Use of online forums or

discussions to share

ideas, identify risks and

opportunities and

priorities in terms of

strategic drivers.

221

222 APPENDIX C. THE AUSTRALIAN CRIMINAL INTELLIGENCE MODEL

Collect &

Collate
Gather the raw data and group related items together

to facilitate further processing required to produce the

finished product. Collection involves the identification,

location, and recording and storing of information and

data. The collation groups together related information to

facilitate further processing through the analytical phase

of the Intelligence Cycle. This phase includes the

extraction and collation of known information and

intelligence, the identification of gaps in the information

currently held and the preparation of a collection plan.

Collaboration activities

include: assistance in

locating and gathering

information, sharing

methodologies and

facilitation e.g. locating

information in systems

not available to the

searcher real-time

information contributions

Analyze &

Produce
Integrate, validate, analyse, and prepare the processed

information for inclusion in the finished product. The

analysis and production phase requires highly trained and

specialist personnel (analysts) to give meaning to the

processed information and to make inferences,

conclusions and recommendations. The analyst role is to

synthesize the processed information into a finished,

actionable intelligence product.

Collaboration activities

include Encourage and

support communities of

practice to develop

professional practice and

share skills. Share and

comment on analysis

Report &

Disseminate
Delivery of the finished product (Dissemination) or an

account or statement describing in detail an event or

situation (Report) to the customer and to others as

applicable. Formal products, reports and ancillary

information including collected data are only useful once

it is made available to others. This may be in the form of a

formal dissemination of a product; a report which

provides a written account of a situation or event; or

ancillary information exposing the support data to others

for additional intelligence work.

Single source of

intelligence.

Collaboration activities

include sharing and

discussion of reports and

ancillary information.

223

Evaluate &

Review
Continually acquire feedback during the Intelligence

Cycle and evaluate that feedback to refine each

individual step and the cycle as a whole. Constant

evaluation and feedback from the ’customer’ is extremely

important to enabling those involved in the Intelligence

Cycle to adjust and refine their activities and analysis in a

continuous improvement cycle to better meet changing

and evolving information needs.

Collaborative activities

include: Collect

evaluative comments and

feedback into one source

by running discussion

forums or blogs on

issues.

	Abstract
	Introduction
	Motivation
	The Data Volume Challenge
	The Data Value Challenge

	Thesis Questions
	Data Management and Stewardship
	Data Quality
	Data Fusion
	Data Processing
	Problem Statement
	The ACC's Advance Analytics Section

	Hypothesis
	Thesis Overview
	Proposed Computational Architecture
	Current Practices within the `Intelligence Life Cycle'

	Thesis Organization

	The Intelligence Life-Cycle
	Big Data-Driven Intelligence
	What is Intelligence
	The Intelligence Life-Cycle
	Intelligence Collation and Collection
	The Impact of Big Data on the Intelligence Life-Cycle
	Technology impact on the Intelligence Life-Cycle
	Cloud Storage and the Intelligence Life-Cycle

	`Data Variety' within the Collation Phase
	What is Data?
	The Messiness of Data
	Data Munging
	Noisy Data

	Data Dimensions
	Temporal
	Snap Shot
	Geospatial
	Graph/Semantic
	Feed and Real-time

	Cross Industry Standard for Data Mining
	Intelligence Products
	Dependency Analysis

	Summary

	The `Big Data' Perspective
	`Big Data' Characteristics
	`Big Data' Classifications
	NoSQL Classification
	Columnar NoSQL Databases

	The Semantic Web
	RDF Data Structures
	The SPARQL Language
	The Triple Store

	Summary

	`Schema-First': The Current Approach
	Schema Application
	Ontology First
	Data Cleansing and the `Schema-First' Approach
	`Schema-First' - Schema Definition Languages
	Data Ingestion
	Human Cleansing
	Automated Cleansing
	Extract Transform Load

	`Schema-First' and the Intelligence Life Cycle
	Summary

	The Proposed `Schema-Last' Approach
	The Data Quality Challenge
	Data Format and Data Cleansing

	The `Schema-Last' Approach Specification
	Formal Process Description
	The Triage Process

	Representational Artefacts
	The Set-Store
	Physical Artefacts within the Set Store
	Representational artefacts within the Set Store
	Conceptual Artefacts
	Formal Definition
	Label Allocation
	Domain Classification
	Domain Ontological Structure
	Cultural Ontology Classification
	The Logical Schema
	Meta-Data
	ISO Standard 11179-1
	Meta-Data and Provenance
	Container Level Meta-Data
	Meta-Data Tags Formal Definition
	Storage Considerations
	Provenance and Storage

	RDF Representation
	RDF List Structure

	Additional Processing Requirements
	Feed Management
	Data Disposal

	The Semantic Store
	The RDF Schema Specification
	The OWL Ontology Specification
	The Palantir Ontology Specification
	The Role of the Semantic Store

	The Match Store
	Summary

	The `Schema-Last' Approach and Data Exploration
	`Big Data' Indexing
	Elastic Search
	Index normalization
	Phonetic Index Encoding

	Lucene and Apache Solr
	Document Inverse Frequency
	The Solr Schema and Domain Mapping
	The Solr Schema and Artefact Representation
	The Solr Schema and Models
	Search Chaining
	Search Federation

	Summary

	The `Schema-Last' Approach and Data Matching
	Entity Matching
	Entity Resolution
	Data Matching
	The Data Matching Process
	Data Ambiguity

	Data Matching Techniques
	N-gram Ratio Comparison
	Monge-Elkan String Comparison
	Levenshtein String Comparision

	Stochastic Considerations
	Data Quality
	Time of Collection
	Intelligence Rating
	Rarity of Name

	Multiple-criteria decision analysis
	Decision Trees
	Markov Chains
	The Weighted Sum Model
	The Weighted Product Model
	Stochastic Weighted Average Score
	The ACC `Aries' Score

	Data Matching Techniques in Practice
	Summary

	The `Schema-Last Approach' and Data Fusion
	Data Fusion and Data Reduction
	The Waterfall Model
	Boyd Loop
	The JDL Model
	Durrant-Whyte Classification
	Dasarathy’s Classification
	Thomopoulos Classification
	Fusion Models and Intelligence Life-Cycle

	Data Munging and Data Fusion
	Data Fusion Quality
	Data Collection and Data Fusion
	Incomplete or Missing Data

	Data Reduction
	Map Reduction
	Data Reduction and Hadoop

	Summary

	The `Schema-Last' Approach: A Case Study
	Fusion Data Holding
	The Architecture
	`Schema-Last' Approach Reference Implementation
	Evaluation of Existing Implementations
	Summary of `Schema-Last' Approach Implementations
	Relational Table and Recursive Structures
	Aries
	Shiloh
	Eland
	Physical Artefacts within the Set Store

	The Minerva Project
	Storage and Processing Strategies
	Load Performance
	Extraction Performance
	Property Path Support
	Implementation Acceptance
	The Bulk Matcher

	Other Implementations
	Summary

	Conclusion and Further Work
	Response to Thesis Questions
	Data Management and Stewardship
	Data Quality
	Data Fusion

	Problem Statement Response
	Further Work

	Bibliography
	Appendix
	Supporting Material
	Publications
	Letter of Appreciation

	Media Release - ACC Fusion Capability
	The Australian Criminal Intelligence Model

